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Helicobacter pylori colonises the gastric epithelial cells of half of the world's population and represents a risk
factor for gastric adenocarcinoma. In gastric epithelial cells H. pylori induces the immediate early response
transcription factor nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-«B) and the innate
immune response. We show that H. pylori induces in a type IV secretion system-dependent (T4SS) and cytotoxin
associated gene A protein (CagA)-independent manner a transient activation of the inhibitor of NF-xB (IkBat)
kinase (IKK)-complex. IKKa and IKKB expression stabilises the regulatory IKK complex subunit NF-xB essential

f;g;vl\()lrg:thogenidty island modulator (NEMO). We provide evidence for an intimate mutual control of the IKK complex by mitogen-
IKkBa activated protein kinase kinase kinase 3 (MEKK3) and transforming growth factor [ activated kinase 1 (TAK1).
IKK complex TAK1 interacts transiently with the E3 ubiquitin ligase tumor necrosis factor receptor-associated factor 6
RelA (TRAF6). Protein modifications in the TAK1 molecule, e.g. TAK1 autophosphorylation and K63-linked
Type 4 secretion system ubiquitinylation, administer NF-<B signalling including transient recruitment of the IKK-complex. Overall, our
TRAF6 data uncover H. pylori-induced interactions and protein modifications of the IKK complex, and its upstream
regulatory factors involved in NF-kB activation.

© 2014 The Authors. Published by Elsevier B.V. All rights reserved.

1. Introduction for IL-8 release [9]. Further it has been shown that H. pylori induces NF-

The human pathogen Helicobacter pylori colonises the gastric epithe-
lium and could induce gastric diseases [1]. Virulent strains of the gram-
negative, microaerophilic bacterium H. pylori carry a cag pathogenicity
island (cagPAl). It encodes the T4SS, which translocates the effector
protein CagA and possibly other molecules into epithelial host cells [2].

Infection of the gastric epithelial cell layer by H. pylori induces
inflammatory responses in the host by releasing chemotactic
chemokines which recruit monocytes and granulocytes to the site of
infection [3]. Thus, gastric epithelial cells actively participate in inflam-
mation and mucosal immunity during initial and persistent H. pylori
infection. The host antimicrobial response provoked by colonising
H. pylori involves NF-kB, which regulates, along with other signalling
pathways, the activation of genes involved in the innate immune
response. Activation of NF-kB is fast and leads to the release of
chemokines, e.g. interleukin 8 (IL-8) from colonised epithelial cells
[4-8]. Systematic mutagenesis revealed that some cagPAI genes were
required for induction of IL-8 and also showed that CagA is dispensable
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KB activity very fast in a T4SS-dependent, but CagA-independent
manner [6,10-13].

The heterodimeric NF-«B transcription factor composed of p50
and RelA becomes translocated into the nucleus in response to
H. pylori within a few minutes. A prerequisite for nuclear translocation
of NF-kB is the phosphorylation of the NF-«B inhibitor IkBa in a
consensus sequence (DSGXXS: at S32 and S36) by IKKB [12-14].
Further, tyrosine phosphorylation of IKKR (Y199) directed by cellular
sarcoma (c-Src) contributes to NF-kB activation [15]. IKKB is part of the
IKK-complex, which contains two highly homologous kinase subunits,
IKKo and IKK(, and the regulatory subunit NF-B essential modulator
(NEMO). Phosphorylation of IkBa is a signal function for K48-linked
ubiquitinylation of IkBa by a cullin-RING ubiquitin ligase [16].

Different eukaryotic factors involved in NF-kB activation in H. pylori-
infection have been described so far, e.g. p21-activated kinase1 (PAK1)
[14,17], NF-kB-inducing kinase (NIK) [14,17,18], TRAF2 [19] and
TRAF6 [18,19], the peptidoglycan recognising nucleotide-binding
oligomerisation domain-containing protein 1 (NOD1) [20], TAK1 and
myeloid differentiation primary response 88 (MyD88) [19], c-Src [15]
and Ca?"/calmodulin-dependent kinase Il (CAMKII) [21]. Hitherto, the
mechanism of IKK complex regulation in H. pylori infection is not
resolved [22].

Distinctive microbial macromolecular ligands, such as lipopolysac-
charide (LPS) and flagellin, which bind to toll-like receptors (TLRs)
might not be responsible for activation of NF-kB, because isogenic T4SS
mutant strains of H. pylori omit NF-<B activation. Further, muropeptides
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(y-p-glutamyl-mesodiaminopimelic acid) derived from peptidoglycans,
which bind NOD1 protein, might be also not involved in H. pylori-
induced NF-+B activation [23].

Here, we report that H. pylori induces in a T4SS-dependent, but
CagA-independent manner a transient activation of the IKK complex.
The integrity of the IKK complex is required for phosphorylation of
RelA and IkBa, and the IKK complex assembly stabilises the NEMO
protein. Further, we provide evidence for an intimate mutual control
of the IKK complex by MEKK3 and TAK1. H. pylori induces a transient
recruitment of TRAF6 to TAK1. Protein modifications of TAK1, e.g. auto-
phosphorylation and K63-linked ubiquitinylation, administer NF-kB
downstream signalling including transient interaction of the IKK
complex with TAK1.

2. Materials and methods
2.1. Cell culture and bacteria

AGS, NCI-N87 (human gastric carcinoma) and SW480 (human
colorectal carcinoma) cells (ATCC) were grown in RPMI 1640 medium
(PAA Laboratories) supplemented with 10% fetal bovine serum (FBS)
and penicillin/streptomycin. Sixteen hours prior to the experiment,
the cell medium was replaced with fresh RPMI 1640 supplemented
with 0.5% FBS.

H. pylori wild-type (wt) strain P1 and their isogenic mutants P1 cagA
and P1 cagT as well as wild-type (wt) strain G27 and their isogenic
mutants G27 cagA and G27 cagE were cultured for 48-72 h as described
previously [24,25]. AGS cells were infected at a multiplicity of infection
of 100.

2.2. Antibodies and inhibitors

The description of the antibodies used for the experiments is
provided in Supplementary Table S1.

A derivative of (5Z)-7-oxozeaenol was purchased from AnalytiCon
Discovery and IKK inhibitor VII was from Calbiochem/Merck. Recombi-
nant human TNFa and IL-1(3 were purchased from R&D Systems.

2.3. Cell fractionation, immunoprecipitation and immunoblot

Cell lysates were prepared with a modified RIPA buffer as described
[26]. For ubiquitin detection, inhibitors of ubiquitin and ubiquitin-like
isopeptidases and deubiquitinylases PR-619 (10 uM) (LifeSensors),
N-ethylmaleimide (2 mM) and 1,10-phenantroline (2 mM) (Sigma-
Aldrich) were added to the lysis buffer. Lysates were boiled with sample
buffer (50 mM Tris-HCI, pH 6.8, 2% SDS, 10% glycerol, 100 mM DTT,
and 0.1% bromphenol blue) for 5 min. Subcellular fractions of AGS
cells were prepared with the ProteoExtract kit (Calbiochem/Merck).

For immunoprecipitation, cell lysates were incubated with the
antibody overnight at 4 °C. Protein G Dynabeads (Invitrogen Dynal
AS) were used to capture the immunocomplexes.

Proteins in the lysates or immunoprecipitates were separated by
SDS-PAGE and the gel was electrotransferred onto Immobilon-P
transfer polyvinylidene fluoride membranes (Millipore). The blots
were incubated with primary antibodies diluted in 5% non-fat milk
overnight at 4 °C and subsequently with HRP-conjugated anti-rabbit
or anti-mouse secondary antibodies (Jackson ImmunoResearch Labora-
tories). Immunoblots were developed using the enhanced chemilumi-
nescence detection kit Amersham ECL (GE Healthcare).

2.4. Transient transfection

Cells (~10° cells/35 mm dish) were transfected with siRNAs specific
to IKKe, IKKB, NEMO, MEKK3 (Eurogentec) and TAK1 (Santa Cruz
Biotechnology) using siLentFect Lipid Reagent (BioRad) in Opti-MEM I
culture medium (Life Technologies) supplemented with 5% FCS. A

scrambled sequence that does not lead to the specific inhibition of any
known cellular mRNA was purchased from Santa Cruz Biotechnology.

For ectopic expression of proteins, AGS cells (2 x 10° cells/100 mm
dish) were transfected with pCMV-TAK1, pCMV-TAK1(K63W) and
pRK5-HA-Ubiquitin-K63 (Addgene, plasmid 17606, a gift of T. Dawson)
by using Effectene transfection reagent (Qiagen).

2.5. RNA isolation and RT-PCR

Total RNA was extracted with the RNeasy Plus Micro kit (Qiagen).
cDNA was synthesized from 1 pg of RNA using a random hexamer
primer and RevertAid First Strand cDNA Synthesis kit (Fermentas).
cDNA was amplified as described [26] using the following primers: 5’-
TCCAAAATCAAGTGGGGCGATGCT-3’ (forward) and 5-CCACCTGGTGCT
CAGTGTGACCC-3’ (reverse) for GAPDH; 5’-GCAGAGAGGAGGACCTGT
TG-3' (forward) and 5'-ACTGCTTCAGCCCACACTTT-3’ (reverse); 5'-
GAAACAACAGCTGCCTCTCC-3’ (forward) and 5’-TCCTGTACAGCTCCCT
TGCT-3’ (reverse); and 5'-GACAAGGCCTCTGTGAAAGC-3’ (forward)
and 5-ATCGATCACCTCCTGTTTGG-3’ (reverse) for IKKa, IKKB and
NEMO, respectively. GAPDH expression served as an internal control.
PCR products were visualized by ethidium bromide staining following
the agarose gel electrophoresis.

2.6. Transactivation assay

AGS cells were seeded onto 24-well plates at a density of 3.5 x 10%
cells per well in Opti-MEM I culture medium supplemented with
5% FCS. The Firefly Luciferase plasmid containing three repeats of the
NF-kB binding site from the human immunodeficiency virus was mixed
with Renilla Luciferase plasmid in a ratio of 60:1 and co-transfected
with 50 nM of specific siRNAs against TAK1 or MEKK3 using SureFECT
transfection reagent (SABiosciences). Luciferase activity was estimated
in crude cell lysates using the Dual-Luciferase Reporter Assay System
(Promega) with a Lumat LB 9507 luminometer (Berthold Technologies).
The inducible firefly luciferase activity was normalised relative to
Renilla's activity, and fold changes in stimulated samples were calculated
in comparison to non-stimulated cells.

2.7. Statistical analysis

Statistical analysis of the results was performed using the Student's
t-test. The data are expressed as the mean fold changes from at least 3
separate experiments 4+ SEM with the value of the control arbitrarily
normalised to 1.

3. Results
3.1. IKK complex activity is required for NF-kB activation

We investigated NF-kB regulation in AGS cells infected with isogenic
H. pylori P1 strains (wt, cagA or cagT). CagA represents a virulence factor,
which becomes translocated via the T4SS, and the CagT protein is
required for the assembly of the pilus-like T4SS [27].

Infection of AGS cells with isogenic wt and cagA-deficient H. pylori
induced a strong and transient phosphorylation within the activation
loops of IKKa and IKKP, whereas phosphorylation of NEMO was
sustained (Fig. 1A). Infection with the cagT mutant did not induce
phosphorylation of the IKK complex. Prominent phosphorylation of
IKKo/IKKP and NEMO in TNFo-treated cells was similar to H. pylori-
infected cells (Fig. 1B). IKK activity is crucial for H. pylori-induced
NF-kB activation, because the selective ATP-competitive KK
inhibitor VII abrogated IkBa and RelA phosphorylation (Fig. 1C).
The integrity of the IKK complex was not affected in response to
H. pylori infection as demonstrated by co-immunoprecipitation of
IKKo/IKKP with an antibody against NEMO (Fig. 1D).
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Fig. 1. IKK complex activity is required for NF-xB activation. AGS cells were infected with the H. pylori P1 wt strain or with the cagA or cagT mutants or were stimulated with TNFa for the
indicated periods of time. (A and B) Cell lysates were analysed in an immunoblot using the antibodies against the indicated proteins. Immunostaining of GAPDH was performed to show
equal protein loading. (C) Cells were treated with 10 uM of IKK inhibitor VII for 30 min prior to infection. (D) Cell lysates were subjected to immunoprecipitation (IP) using anti-NEMO
antibody and immunoprecipitates were analysed in an immunoblot. The sample without antibody (no ab) indicates unspecific binding to the beads and serves as a control. (E and F)
Subcellular fractions were prepared and analysed in an immunoblot. Immunostainings of GAPDH, occludin and histone H3 were performed to show the purity of the cellular fractions
and equal protein amounts in the samples. The blots shown in each panel comprise data from the same experiment. Full-size blots are presented in Supplementary Fig. 4.

To analyse whether differences exist between H. pylori-infected and
TNFa-stimulated cells regarding the cellular localisation of the activated
IKK complex, we studied the abundance of the IKK subunits in cytosolic,
membranous and nuclear fractions. As expected, infection with H. pylori
or TNFa treatment actuated an accumulation of RelA in the nucleus of
AGS cells within 15 min, but no changes in the localisation of IKK
subunits were detected (Fig. 1E and F).

3.2. Integrity of the IKK complex is required for NF-KB activation

The particular involvement of each IKK subunit in NF-kB activation
was investigated by using specific siRNAs. Treatment of AGS cells with
different amounts of siRNAs against IKKc, IKKB or NEMO led to a
dose-dependent reduction of IkBa and RelA phosphorylation in
H. pylori infection (Fig. 2A-C). Herein, knockdown of NEMO led to the
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Fig. 2. Integrity of the IKK complex is required for NF-B activation. siRNA-transfected AGS
cells were infected with the H. pylori P1 wt strain for 30 or 60 min, and cell lysates were
analysed in an immunoblot using antibodies as indicated. 15, 30 and 60 nM of KK
siRNA (A), IKKPB siRNA (B) or NEMO siRNA (C) were used for transfection. A scrambled
siRNA (30 nM) was used as a control. Quantification of immunoblot bands was performed
using densitometry and the relative phospho-IkBa/GAPDH ratio is indicated. The blots
shown in each panel comprise data from the same experiment. Full-size blots are
presented in Supplementary Fig. 5.

most prominent reduction of Ik<Ba phosphorylation (5.8%) (Fig. 2C).
Thus, the integrity of the IKK complex is strongly required for its
catalytic activity in H. pylori-infected cells. Interestingly, the NEMO
protein abundance was very low in cells treated with specific siRNAs

against IKKa or IKKP (Fig. 2A and B). Similar data have been observed
in H. pylori-infected NCI-N87 and SW480 cells (Fig. S1A and B).

3.3. IKKoy/3 complex assembly stabilises NEMO

We observed a dramatic loss of the NEMO protein in IKKx- and
IKKp-deficient cells (Fig. 3A and B). The effect was most prominent in
a double knockdown of IKKa/IKKR (Fig. 3A). To exclude off-target
effects on NEMO, transfection of AGS cells with 3 different siRNAs
against each of IKKot or IKKP were performed showing similar results
(Fig. 3B). Quantification of NEMO mRNA by RT-PCR indicated that the
decrease of NEMO in cells treated with siRNAs against IKKa or IKKPR
was not due to changes at the transcriptional level (Fig. 3C). Thus, IKK
complex assembly stabilises the regulatory subunit NEMO.

3.4. MEKK3 and TAK1 are required for efficient activation of the IKK
complex

MEKK3 and TAK1 kinases have been shown to transduce signalling
from cytokine receptors to IKK complex activity [28]. Infection of AGS
cells with P1 wt and cagA-deficient mutant of H. pylori induced a tran-
sient phosphorylation (S166) of MEKK3 kinase (Fig. 4A). The functional
consequence of phosphorylation at amino acid S166 in the MEKK3 pro-
tein was not clarified so far. Interestingly, we observed also a slight
phosphorylation of MEKK3 in the cagT-infected cells (Fig. 4A), whereas
in TNFa-stimulated cells, no phosphorylation of MEKK3 was detected
(Fig. 4B). Inducible phosphorylation of TAK1 at critical sites (T184/
T187) in the activation loop peaked at 15 min p.i., whereas the cagT
mutant did not induce TAK1 phosphorylation (Fig. 4A). Similar to the
H. pylori strain P1, we observed an inducible phosphorylation of
MEKK3 and TAK1 in a T4SS-dependent, but CagA-independent manner
by the H. pylori G27 strain (Fig. S2A). TNFa treatment resulted also in
transient, but less strong TAK1 phosphorylation than infection with
H. pylori (Fig. 4B). Studying putative differences of TAK1 and MEKK3
phosphorylation in other cell lines, we observed that H. pylori induced
strong phosphorylation of TAK1 and weak phosphorylation of MEKK3
in NCI-N87 cells, whereas similar phosphorylation of both proteins
was observed in infected SW480 cells (Fig. S2B).

A transient depletion of TAK1 or MEKK3 led to a reduction of IKKot/
IKKR phosphorylation (27.8% and 71.1%), and IxBat and RelA phosphor-
ylation in H. pylori-stimulated cells (Fig. 4C). Interestingly, depletion of
MEKK3 together with TAK1 had an additive suppressive effect on phos-
phorylation of IKKo/IKKR (12.5%) (Fig. 4C). Similar data have been
received in H. pylori-infected NCI-N87 and SW480 cells (Fig. S2C and
D). These results suggest that H. pylori-induced activation of NF-kB
involves both kinases (MEKK3 and TAK1). Even more prominent was
the impact of TAK1 or MEKK3 siRNAs on NF-kB transactivation activity
in response to H. pylori infection and TNFa treatment (Fig. 4D). Pre-
treatment of AGS, NCI-N87 and SW480 cells with (5Z)-7-oxozeaenol,
a highly potent inhibitor of TAK1 [29], dose-dependently reduced the
phosphorylation of IKKat/IKKR, IkBa and RelA in response to H. pylori
(Fig. 4E; Fig. S2E and F), in agreement with the data shown above
about depletion of TAK1 by RNA interference. The inhibitor did not com-
promise the viability of H. pylori (Fig. 4F). Pre-treatment of AGS cells
with the (5Z)-7-oxozeaenol reduced also TNFa- and IL-1pB-stimulated
phosphorylation of NF-«B effector molecules (Fig. 4G and H).

3.5. TAK1 interacts with the IKK complex

Investigation of TAK1-associated proteins revealed that IKKo and
IKKp were co-immunoprecipitated with TAK1 in an inducible manner
in cells infected with P1 wt and cagA, but not with the cagT strain
(Fig. 5A and B). In addition to AGS cells, we observed interaction of
IKKs to TAK1 in P1 wt-infected NCI-N87 and SW480 cells (Fig. S3A
and B). Thus, H. pylori infection induces formation of a protein complex
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blots are presented in Supplementary Fig. 6.

composed of TAK1/IKKs in a T4SS-dependent, but CagA-independent
manner.

It has been published that CagA might interact with TAK1 [30]. Thus,
we analysed the proteins immunoprecipitated by the TAK1 antibody in
detail for the presence of CagA. As shown in Fig. 5A, there was CagA pro-
tein detected in wt-infected cells after long exposure of the immuno-
blot. In the cagA-infected cells, there was no CagA protein recognised,
indicating that the protein band from the wt-infected cells represents
the CagA protein. Further, we detected the CagA protein in the cagT-
infected cells also after long exposure of the immunoblot (Fig. 5B). Of
note, the cagT mutant expresses the CagA protein, but does not inject
CagA into the epithelial cells due to the non-functional T4SS. This indi-
cates that the observed CagA protein in the TAK1 immunoprecipitation
from lysates of the cagT-infected cells arose from adherent bacteria.
When we performed appropriate controls within the experiment, we
observed surprisingly the CagA protein in the TAK1 immunoprecipita-
tion from the lysate of the H. pylori wt bacteria (only wt + ab), in the
absence of an AGS cell lysate (Fig. 5A, lane 12) or from the lysate
of the cagT bacteria (only cagT + ab) (Fig. 5B, lane 13). In the TAK1
immunoprecipitation from the lysate of the H. pylori cagA bacteria
(only cagA + ab) there was no CagA protein detected (Fig. 5A,
lane 13). Thus, it is curious that the antibody against TAK1
immunoprecipitated to some extent the CagA protein. This is at least
one explanation for the misinterpretation of the data by Lamb et al.
[30] where the same antibody from Santa Cruz has been used for
TAK1 immunoprecipitation. In a reverse immunoprecipitation using a
CagA antibody we could not recognise co-immunoprecipitated TAK1
even after long exposure (Fig. 5C), which supports the data of the
TAK1 immunoprecipitation.

3.6. TAK1 associates transiently with TRAF6

TRAF6, an E3 ligase, has been shown to bind to TAK1 (through TAK1
binding protein TAB2) in response to IL-1(3 and LPS [31]. In line with
this, inducible TRAF6 recruitment to TAK1 was observed in H. pylori-
infected AGS cells (Fig. 6A). Being most prominent at 30 min p.i.,

TAK1-TRAF6 transient association was detected in the H. pylori wt-
and cagA- but not cagT-infected cells (Fig. 6B). Similar to the H. pylori
strain P1, the G27 strain induced recruitment of TRAF6 to TAK1 and
an interaction between TAK1 and IKKo/ in a T4SS-dependent, but
CagA-independent manner (Fig. 6E). In addition to AGS cells, we
observed recruitment of TRAF6 to TAK1 in P1 wt-infected NCI-N87
and SW480 cells (Fig. S3D and E). We also found an increase of K63-
linked ubiquitinylation of TAK1 in AGS cells after overexpression of
TAK1 and ubiquitin-K63 (other lysines mutated to arginine) in response
to H. pylori (Fig. 6C) and IL-1p (Fig. 6D). TAK1 catalytic activity is
required for ubiquitinylation of TAK1, because ectopic expression of
TAK1(K63W) kinase inactive protein showed no ubiquitinylation in
response to IL-13 (Fig. 6D).

4. Discussion

Pathogens often subvert the innate and adaptive immune response
by secretion of effector molecules via a secretion system directly into
the cytosol of target cells, where the effectors can access the host cell
signalling. Many proteins delivered by pathogens into host cells affect
the regulation of the IKKs, IkBa and the transcription factor RelA [16].
A number of eukaryotic molecules have been described which might
contribute to the regulation of NF-«B activation in H. pylori infection
[22]. Despite these findings, details about the entire mechanism of
how H. pylori infection promotes the activity of the immediate early
response factor NF-«B are still not well understood. Here, we add
more facets to the apparent complexity of NF-kB regulation in
H. pylori infection by analysing the regulation of the IKK complex and
identifying functional components within the NF-«B signal transmission
(Fig. 7).

H. pylori-induced phosphorylation within the activation loops of
IKKo (S176/5180) and IKKPB (S177/S181) requires the functional T4SS,
but not CagA (Fig. 1). The phosphorylation causes conformational
changes resulting in kinase activation [32]. We show for the first time,
that H. pylori promotes NEMO phosphorylation at S376 (Fig. 1). In
previous studies it has been shown that IKKB, but not IKKo
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H. pylori wt or treated with TNFa for 3 h, and a reporter gene assay was performed. #P < 0.01 compared to the scrambled siRNA-transfected cells. (E, G, and H) Cells were treated with
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presented in Supplementary Fig. 7.

phosphorylates NEMO in response to TNFa in murine embryonic fibro-
blasts [33], and that the phosphorylation of NEMO at orthologous S369
controls intrinsic activity of the IKK complex [34]. Our data indicate that
the pre-assembled IKK complex and its subcellular localisation is not af-
fected in H. pylori infection. In contrast to Hirata et al. [12], we found no
nuclear translocation of IKKa in AGS cells colonised by H. pylori
(Fig. 1E). Interestingly, we show for the first time that the integrity of

the IKK complex is required for NF-kB activation by H. pylori, and deple-
tion of NEMO has the most prominent suppressive effect on NF-<B ac-
tivity. In addition, IKK complex assembly is a prerequisite for the
stability of the regulatory subunit NEMO (Figs. 2 and 3).

The regulation of the IKK complex exerts an extraordinary degree of
connectivity of central signalling pathways and executes cell type- and
stimulus-specific functions. Studying the intricate interactions and
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Fig. 5. TAK1 interacts with the IKK complex in a T4SS-dependent manner. AGS cells were infected with the H. pylori P1 wt strain or with the cagA or cagT mutants for the indicated periods
of time. Cell lysates were subjected to immunoprecipitation (IP) using anti-TAK1 antibody (A and B) or anti-CagA antibody (C). The samples without antibody (no ab), without AGS cell
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Immunoprecipitates and cell lysates were analysed in an immunoblot using the antibodies as indicated. The blots shown in each panel comprise data from the same experiment. Full-

size blots are presented in Supplementary Fig. 8.

modifications of upstream regulatory components, which contribute to
IKK activation within H. pylori-induced NF-<B signal transmission, we
identified the kinases MEKK3 and TAK1. MEKK3 plays an essential role
in lysophosphatidic acid-, TNFa- and LPS-induced NF-kB activation
[35-37]. It has been suggested by Yao et al. [28] that MEKK3-
dependent activation of NF-«B involves NEMO, IKKo: and IkBa phos-
phorylation, leading to subsequent dissociation of IkBa from NF-«B
without IkBa degradation. We found that infection with H. pylori pro-
moted phosphorylation of MEKK3 at S166, but not at S337 (data not
shown), whereas TNFa did not stimulate S166 phosphorylation
(Fig.4). Activating autophosphorylation at S184/S187 within the activa-
tion loop of TAK1 was induced in H. pylori-infected cells in a T4SS-
dependent, but CagA-independent manner, and in TNFo-stimulated

cells. Transfection of AGS, NCI-N87 and SW480 cells with TAK1-
specific, together with MEKK3-specific siRNAs led to a strong reduction
of IKKo/B, IkBa and RelA phosphorylation and suppressed the
transactivation activity of RelA following H. pylori infection. Thus, both
kinases contribute to H. pylori-directed activation of NF-kB. The sup-
pression of NF-kB activation was prominent when we used the TAK1 ki-
nase inhibitor (5Z)-7-oxozeaenol (Fig. 4). These data are in accordance
with the results of Hirata et al. [ 19], which have demonstrated that TAK1
is required for H. pylori-induced IkBa phosphorylation. In addition to
TAK1 which phosphorylates IKKot/3, also PAK1 contributes to IKK acti-
vation by phosphorylation of IKKa [14]. Thus, H. pylori could induce
NF-kB activation by different contributing pathways/factors. Other
contributing factors like TRAF2, NIK [18], and MyD88 [19] have been
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Fig. 6. TAK1 interacts with TRAF6. AGS cells were infected with the H. pylori P1 wt strain, the cagA or cagT mutants (A-C), with the H. pylori G27 wt strain, the cagA or cagE mutants (E), or
were stimulated with TNFo or IL-113 for the indicated periods of time. Cell lysates were subjected to immunoprecipitation (IP) using anti-TAK1 antibody. The samples without IP antibody
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each). The blots shown in each panel comprise data from the same experiment. Full-size blots are presented in Supplementary Fig. 9.

described previously. Of note, we show now by a variety of experimen-
tal approaches, including siRNA interference, that TAK1 is involved in
H. pylori-induced NF-kB activation; thus, we have to repeal our previous
data in which transient transfection of a dominant negative TAK1 cDNA
had no impact on NF-B transactivation [17].

TAK1 transiently associates with the IKKs, in a T4SS-dependent, but
CagA-independent manner. The kinetics of the IKK interaction to TAK1
is in front of IkBa and RelA phosphorylation. Further, we provide
experimental evidence that CagA does not interact with TAK1 in
H. pylori-infected cells (Fig. 5).

TAK1 forms a complex with TAB1, TAB2 or the structurally related
TAB3 [38], and attracts several additional activators, including apoptosis
signal-regulating kinase 1 (ASK1) [39] and TRAF6. TRAF molecules
represent a group of structurally similar adaptor proteins, which link
the receptors to downstream signalling. TRAF6 transduces signalling
from TLRs and the IL-1(3 receptor by associating with phosphorylated
IL-1-receptor associated kinase 1 (IRAK1). TRAF6 is regulated by an E2
enzyme complex (Ubc13)/Uev1a) and is capable of autoubiquitinylation.
K63-linked ubiquitin chains of TRAF6 recruit TAB2 and its homologue
TAB3, and thereby TAK1 [38]. Similarly to IL-13 receptor/TLR-dependent
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signal transmission, H. pylori induces transient recruitment of TRAF6 to
TAK1 (Fig. 6). H. pylori has to hold a functional T4SS, but not CagA, to elicit
this effect.

Ubiquitinylation plays an important role in NF-kB signalling. K48-
ubiquitinylation is associated with protein degradation and K63-
ubiquitinylation serves as regulatory modification [40]. Here, we
observed a transient K63-linked ubiquitinylation of TAK1 on H. pylori
infection (Fig. 6). Putative E3 ligases which ubiquitinylate TAK1
comprise TRAF6 or tripartite motif 8 (TRIM8), which ubiquitinylate
TAK1 at K34 [41] and K158 [42], respectively. Eventually, TRAF6
promotes H. pylori-induced K63-linked ubiquitinylation of TAK1 when
recruited to the TAK1/TABs complex. Since the observed K63-linked
ubiquitinylation of TAK1 on H. pylori infection is transient (Fig. 6), a
putative role of deubiquitinylases remains to be investigated. For the
removal of TAK1 ubiquitinylation, it has been described that USP4
deubiquitinylates TAK1 and negatively regulates IL-13- and LPS-

induced NF-kB [43]. In addition, an Itch-CYLD complex promotes the
transition of K63-linked ubiquitinylation to K48-linked ubiquitinylation
by sequentially cleaving the K63-linked ubiquitin chain and catalysing
K48-linked ubiquitinylation of TAK1 [44]. Lysine 72 has been suggested
as a site for K48-linked ubiquitinylation of TAK1 [45].

In summary, our study provides evidence for an intimate mutual
control of the IKK complex by the kinases MEKK3 and TAK1 in
H. pylori infection. The findings support a mechanism by which
H. pylori, through the T4SS but not through CagA, promotes MEKK3
and TAK1 phosphorylation, TAK1 ubiquitinylation and the recruit-
ment of the IKK complex promoting NF-«B signalling in the host
cell. In depth clarification of the underlying mechanisms of
H. pylori-induced NF-«B activation will require further extensive
studies to identify the intricate interactions of upstream regulatory
factors and the protein modifications important for their biological
functions.
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Supplementary Table S1

Antibody

Source

Manufacturer

CagA

Mouse

Austral Biologicals, San Ramon, CA, USA

Occludin
NF-kBp65

Mouse

BD Biosciences Pharmingen, San Jose, CA, USA

Phospho-lkBa (Ser32/36) (5A5)
Histone H3

IxBa (44D4)

IKKo

MEKK3 (D36G5)

TAK1

*Phospho-1KKa/B(S176/180)

*The antibody detects IKKa and IKKp
Phospho-IKKa/B(S176/177) (C84E11)
Phospho-IKKy(S376)
Phospho-NF-kB p65(S536)
Phospho-TAK1(T184/187)

Mouse
Rabbit

Cell Signalling Technology Inc., Danvers, MA, USA

GAPDH
IKKB

Mouse

Millipore, Temecula, CA, USA

IKKy (B-3)

TRAF6

Phospho-MEK kinase-3(S166)
TAK1 (for immunoprecipitation)

Mouse

Rabbit

Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA

HA

Mouse

SIGMA-ALDRICH CHEMIE GmbH, Steinheim, Germany




Appendix A. Supplementary data

Legends to supplementary figures

Supplementary Fig. S1. Integrity of the IKK complex is required for NF-kB activation. siRNA-
transfected or mock-treated NCI-N87 (A) or SW480 (B) cells were infected with the H. pylori P1
wt strain for the indicated periods of time, and cell lysates were analysed by immunoblot using
antibodies as indicated. 30 nM of each of IKKa, IKKB or NEMO siRNA were used for
transfection. A scrambled siRNA (30 nM) was used as a control. Immunostaining of GAPDH was
performed to show equal protein loading in each lane. The blots shown in each panel comprise

data from the same experiment.

Supplementary Fig. S2. TAK1 and MEKKS are required for efficient activation of the IKK complex
and NF-«xB. (A) AGS cells were infected with the H. pylori G27 wt strain or with the cagA or cagE
mutants for the indicated periods of time. NCI-N87 (B, C and E) and SW480 (B, D and F) were
infected with the H. pylori P1 wt strain or were stimulated with TNFa, or IL-1p for the indicated
periods of time. Cell lysates were analysed by immunoblot using the antibodies as indicated.
Immunostainings of GAPDH were performed to show equal protein loading. (C, D) 48 h prior to
infection, indicated cells were transfected with 30 nM TAK1, MEKK3 or scrambled siRNAs. (E, F)
Cells were treated with increasing doses of TAK1 inhibitor (5Z)-7-Oxozeaenol derivative for 30 min
prior to infection. Quantification of immunoblot bands was performed using densitometry and the
relative phospho-IKK/GAPDH ratio is indicated. The blots shown in each panel comprise data from

the same experiment.

Supplementary Fig. S3. TAKL1 interacts with the IKK complex and TRAF6 in a T4SS-dependent

manner. NCI-N87 cells (A, C) and SW480 cells (B, D) were infected with the H. pylori P1 wt

1



strain for the indicated periods of time. Cell lysates were subjected to immunoprecipitation (IP)
using anti-TAK1 antibody. The samples without antibody (no ab), without eukaryotic cellular
lysate (only wt + ab), or without eukaryotic cellular lysate/bacterial lysate (only buffer + ab)
indicate for the specificity of the IP and serve as controls. Immunoprecipitates and lysates of the
infected cells or only the bacterial (only wt) lysate were analysed by immunoblot using the
antibodies as indicated. The blots shown in each panel comprise data from the same

experiment.



Supplementary Figure S1

A

NCI-N87

IKKaasiRNA - - - - + + + + -
IKKBSIRNA - = = - - =« = - + + 4 + - - - -
NEMOSIRNA - - - - - - - - - - - + o+ o+ 0+
Plwt[min] - 153060 - 153060 - 15 30 60 - 15 30 60
|KBa-p‘ —— i " ——e A
T s O —
REIA | s s e e o i s s s - e
M —
|KKB‘-—-———--——-—-——--—--——-—-—-—— ‘

N[SIX o e ————— |

GAPDH ‘ B e T s ___‘
B SW480
IKKosiRNA - - - - + + + + -
IKKBSRNA - - - = = - - - + + + + o
NEMOSIRNA - - - - - - - - - - - + o+ o+ o+
Plwt[min] - 153060 - 153060 - 15 3060 - 15 30 60
IkBa-P |~ — Z : 2
REIAP |~ - - ey

—_—

KK | i i s s e s i |

KK | 5 e i s s i e 5 5




Supplementary Figure S2

A AGS
G27wt - 153060 90 - - - - - - - -
cagA - - - - -153060 9O - - - -
cagg - - - - - - - - - 153060 90
TAKL-P L
MEKK3-P | - - .- \

TAKI‘------pﬂn-—-—-‘

Flagellin * “———————-——-4
GAPDH | |
B NCI-N87 SW 480
Plwt - 10 20 30 40 60 90 - - 10 20 30 40 60 90 -
TNFo - - - - - = = 10 - - = - - - - - 10 -
L1 - - - - - - - - 10 - - - - - - - - 10
TAKL-P e - - -
MEKK3-P | o s L o i B

TAK1 ‘ -------ﬂ-‘ﬂ“---ﬂﬂ‘

Flagellin‘ e — —— e ———— ‘

GAPDH ‘_—.-——.——--”‘

C NCI-N87
TAK1siRNA - - - - - + + + + + - S+ o+ o+ o+ 4+
MEKK3 siRNA S
Piwt - 153060 90 - 1530 60 90 - 15 30 60 90 - 15 30 60 90
IKKa/B-P(S176/177) | 7 & s s e o W —— o — T 4
I I I
L » 51,8 % 41,1 % 29.5 %
IxBa-P ‘ i — ST
REAP | . —memem— e — e e

|
|
T LT T N ————————
|

MEKK3 | = o o s o s o e e

GAPDH ‘-—l-—-—-.: n —— :——‘
D SW480

TAKLsiRNA - - - - - 4+ + + + + - - - - - + 4+ + + +

MEKKS3 siRNA T T S S S SR SR S SN S S

Piwt - 15306090 - 153060 9 - 15 30 60 90 - 15 30 6090
IKKoc/B-P(Sl?G/l??)‘ [——— — ‘

I I I

I‘> 24,8 % 31,1 % 17.5 %
IkBa-P o | = L |
RelAP  — — e e el el

TAKl‘ bl LT - .
MEKK3 R e ——— ‘

GAPDH ‘-_--‘ — — :._‘




Supplementary Figure S2

E

NCI-N87
(52)-7-Oxozeaenol - 100 nM 300 nM 500 nM

P1wt - 30 60180 - 30 60 180 - 30 60 180 - 30 60 180
IKKo/B-P(S176/177) = '
IkBo-P |

IkBa, :

RelA-P

SwW480
(52)-7-Oxozeaenol - 100 nM 300 nM 500 nM
P1wt - 30 60180 - 30 60 180 - 30 60 180 - 30 60 180




Supplementary Figure S3

A NCI-N87 < B SW480 e

IP: TAK1 a IP: TAK1 3 g

8 L < 8 g

o E _:Qj [} § _8

< > > < > >

Plwt 30 - 10 20 3040 60 § § Plwt 30 - 10 20 3040 60 § &
IKKo, } o s s ‘

IKKa. (—ifw~ﬂ—‘
o ~==m===  we  _SECL

TAKL & ommem———- TAKI nmmmmeme—e-
NCI-N87
C IP: TAK1
Q
©
g
] & | Totallysates
8 -
o £3|%
= 22| >
Plwt 30 - 10 20 30 40 60 90 & 5| & 30 - 10 20 30 40 60 90
TRAF6 T — — — — ——-—_ﬂ--—‘
TAK1 ‘ 1 e 0 0 m‘m-m'-ﬁiih{
ceo R D e ———
D SW480
IP: TAK1
Qo
©
2 | Totallysates
8 + 2
o £3 %
N >> | >
Plwt 30 - 1020 30 40 60 90 § § | & 30 - 10 20 30 40 60 90
b i w7 5 s R
TRAF6 T P o _
TAKL M |
cagA L Bt ]




Supplementary Figure S4

a

wt - 1530609 180 - - - - - - - -
cagA - - - - - - 1530609180 - - - - -
viB7 - - - - - - - - - - - 1530 60 90180

IKKo/B-P(S176/177) [y YT — -

— — -

-—;?;;-’-;"— - -
NEMO-P —EB e e

—

- ———

GAPDH — —




Supplementary Figure S4

b

TNFa - 15 30 60 90 180
9

i e ey w—

IKKo/B-P(S176/177) ] ; _..____,_s\

B T B
- CEESESE Ty

NEMO-P

GAPDH ]——————\




Supplementary Figure S4

C

IKK inhibitor VII + o+ o+
wt - 30 60 - 30 60

IkBa-P

RelA-P

RelA

GAPDH |.--.-..}

d IP: NEMO a
©
wt - 15 30 60 2
IKKo 1§+ ¥ ¥F .
IKKB




Supplementary Figure S4

e
Cytosol Membrane Nucleus
wt - 15 30 60 90180 - 15 30 60 90180 - 15 30 60 90 180
i
3
IKKa +- g-———-——__________‘_
i &
€
w
IKKp ———— — - -

NEMO " —— — -—--A‘
3 _—— e e T
RelA P —— ———
GAPDH b RO
Occludin R ——

Histone H3 : — — —————

Whole lysate

\

|\ |



Supplementary Figure S4

()

Cytosol Membrane Nucleus §

=

TNFo - 15 30 60 90180 - 15 30 60 90180 - 15 30 60 90 180 %

ey

_ 2

IKK(I — T W W] < —— s — i — — — — — —

IKKB - S — . s —— ———— e e e e | -
‘
- = 8
NEMO Pt e S ———— -
_——_——
RelA —— — —— — - — e e —— — —

- gE—— —

GAPDH -~ ' -

T —— —

.

Occludin —— e

\

Histone H3 —— — — ——




Supplementary Figure S5

a IKKa.siRNA[nM] - - - 15 15 15 30 30 30 60 60 60
wt[min] - 30 60 - 30 60 - 30 60 - 30 60
IxBa-P —— e —— e
| 20:1%
RelA-P ] IR __\
L
IKKo/B-P(S176/180) = | b b - |
—em_ 5 o
NEMO-P = -
IKKol ]-—--— \
CGR —— R
i,
NEMO = --—: - o 4

GAPDH | e -




Supplementary Figure S5
b

IKKB siRNA [nM] - -
wt [min]

IKKB

NEMO

GAPDH

- 15 15 15 30 30 30 60 60 60

- 3 60 - 3060 - 3060 - 30 60

R __.‘

T
> 121%

- - —— ==

——

"SRR ==

———




Supplementary Figure S5

C

NEMO sSiRNA[nM] - - -~ 15 15 15 30 30 30 60 60 60

wt[min] - 30 60 - 30 60 - 3060 - 30 60

lkBo-P — — — e — PSS =N

T
» 58 %

RelA-P SRS A A TR RSN
ReIA T e s s —— — — — — — —
r

IKKo/B-P(S176/180) | &= i ’ \
VRS e

NEMO-P i

NEMO

GAPDH . —— — —— T — ———




Supplementary Figure S6

a b
IKKBSiRNA - -+ +

NEMO

NEMO

RelA

IKKa, SIRNA - + - + IKKa siRNA -1 2 3 IKKB siRNA -1 2 3

IKKa IKKa

IKKB

IKKP

GAPDH




Supplementary Figure S6

IP: TAKL
€ =
©
IE B g
15
G27wt 60 - - - 153060 9 - - - - - - - - 2838 3=
G27cagA - 60 - - - - - -153060 90 - - - - =2 > > > T
G27cage - - 60 - - - - - - - - - 1530609 § 5 § § &

IKKa

IKKB

TRAF6

CagA

TAK1




Supplementary Figure S6

Total lysates

- - -153060 9 - - - -
; - - - - 1530 60 90

G27wt 60 - - - 153060 90 - -
G27cagA - 60 - - _

G27 cagE 60 -

only wt

only cagA
only cagk

IKKa

IKKB

TRAF6

CagA

TAKL




Supplementary Figure S7
a

wt - 15 30 60 90 180
cagA - - -

- - 1530 60 90180 -
viB7 - - - - - - - - -

15 30 60 9-0 1-80
TAKL-P

 EEERmEs-ESREs S

MEKK3-P 4 — \ L il ik = 5 e ‘
e mENSE
raKt
TAK1 P e e o — o =
s B RSN st
GAPDH —_—




Supplementary Figure S7

TNFa - 15 30 60 90 180

TAK1-P &
- R
MEKK3-P . 4
TAK1 — s ey




Supplementary Figure S7

C
TAK1 siRNA - - - -+ o+ o+ o+ - - -+ o+ o+ o+
MEKK3SRNA - - - - = - - - + + + + + + + +
wt - 3060180 - 3060180 - 30 60180 - 30 60180
IKKa/B-P(S176/177) i s NS um — P —
I I I
= L 27,8 % 71,1 % 12.5 %

.
NEMO-P 5:5‘\ - e
ho—-
Ve =
IxBo-P TR e eeD  ERenGh  ———
5~
-
'L
IkBa T ——— — -
ReIA_P ‘ e — — — — St et e — ""
TAK1 o ——e
AP
MEKK3 \ -
“ﬁJl_

GAPDH T S c . G a— — — - — — D — — —



Supplementary Figure S7

e

(52)-7-Oxozeaenol - 100 nM 300 nM 500 nM

wt - 30 60180 - 30 60 180 - 30 60 180 - 30 60 180

IKKo/B-P(S176/177)

IkBa-P

IkBa,

RelA-P

RelA




Supplementary Figure S8

a
IP: TAK1
g 3
5 g ] + !
o o + 8 Total lysates <
g 2 £ 8 3 £ 8
wt 60 - -10 306090 - - - - > > > wt 60 - -10 306090 - - - - 5 >
caghA - 60 - - - - -1030609065 5 5 = cagA - 60 - - - - -1030609 § §
e (2]
B Aera'— TR of_ f
S
L=
- =
IKKo sFFi=1 il la - KKe - | bbbt -
—_— g—y o
IKKpB IKKB —— ey e — e — T
CagA — e s - — ‘Iong exp. CagA L T w—r— q ‘
k‘ --_.d
s EE L ELEL B € 40 e e S S U S S0 S0 9
TAKL | e - - - | TAKL — Seeeememes e

SeCCCLELTETTTE '

e ————



Supplementary Figure S8

b

IP: TAK1
g 8
s g ]+ F
o o +m L Total lysates B
c c 2 £ 3 t S
wt 60 - -10306090 - - - - = > > wit 60--10306090----%‘%‘
VvirB7 - 60 - - - --lOSOSOQOgggw VirB7 - 60 - - - - -10306090 © ©
B
L i TiHL (Cr) > N
@
E w r 1 -
= . eEEe P -
IKKo TKKOU -] o - —————— — ———
a — o — -
o — -—--———_-—--

TAKL ——— o o o — e TAKL e -




Supplementary Figure S9

a
IP: TAK1
Q
% ©
"
e e 5 Total lysates
+
wt 30 - 10 20 30 40 - - EE T 30 - 10 20 30 40 -
TNFo - - - - = =10 - 2>|> - - - - - - 10 -
L - - - - - - -10668|58 - - - - - - 10
=" 4 .Jr‘}aiﬂp-1m.
RIS |
TAK1 ‘ oy e o B g G _—— -
.
P oo R B o e
P S —
- .

m-



Supplementary Figure S9

C IP: TAK1

HA-UbK63 o+

-+ o+ o+ o+ 4

TAK1 -~
wt - - -15 3060 -
TNFa - - - - - - 10
mi
HA-UbK63 Wi M
v bl hd

TAK1 -.-.-“.-h“..— o —

IP: TAK1
HA-UbK63 SRR
TAK1 + - -+t + - -
TAKL(K63W) R
IL-1B - - --10 -10

s ORI

TAK1 - -

W & §




	Sokolova - Biochim Biophys Acta - MEKK3 and TAK1 synergize to activate IKK complex.pdf
	MEKK3 and TAK1 synergize to activate IKK complex in Helicobacter pylori infection
	1. Introduction
	2. Materials and methods
	2.1. Cell culture and bacteria
	2.2. Antibodies and inhibitors
	2.3. Cell fractionation, immunoprecipitation and immunoblot
	2.4. Transient transfection
	2.5. RNA isolation and RT-PCR
	2.6. Transactivation assay
	2.7. Statistical analysis

	3. Results
	3.1. IKK complex activity is required for NF-κB activation
	3.2. Integrity of the IKK complex is required for NF-κB activation
	3.3. IKKα/β complex assembly stabilises NEMO
	3.4. MEKK3 and TAK1 are required for efficient activation of the IKK complex
	3.5. TAK1 interacts with the IKK complex
	3.6. TAK1 associates transiently with TRAF6

	4. Discussion
	Author contributions
	Conflict of interest
	Acknowledgements
	Appendix A. Supplementary data
	References


	Biochim Biophys Acta - Sokolova - MEKK3 and TAK1 synergize to activate IKK complex suppl
	Foliennummer 1
	Figure S4b.pdf
	Foliennummer 1

	Figure S4c_4d.pdf
	Foliennummer 1

	Figure S4e.pdf
	Foliennummer 1

	Figure S4f.pdf
	Foliennummer 1

	Figure S5a.pdf
	Foliennummer 1

	Figure S5b.pdf
	Foliennummer 1

	Figure S5c.pdf
	Foliennummer 1

	Figure S6a_6b.pdf
	Foliennummer 1

	Figure S7a.pdf
	Foliennummer 1

	Figure S7b.pdf
	Foliennummer 1

	Figure S7c.pdf
	Foliennummer 1

	Figure S7e.pdf
	Foliennummer 1

	Figure S8a.pdf
	Foliennummer 1

	Figure S8b.pdf
	Foliennummer 1

	Figure S9a.pdf
	Foliennummer 1

	Figure S9c_9d.pdf
	Foliennummer 1

	Figure S1.pdf
	Foliennummer 1

	Figure S2a-d.pdf
	Foliennummer 1

	Figure S2e-f.pdf
	Foliennummer 1

	Figure S3.pdf
	Foliennummer 1

	Figure 6e.pdf
	Foliennummer 1
	Foliennummer 2

	Supplementary Table S1.pdf
	Supplementary information Table S1
	Antibody

	Supplementary Table S1.pdf
	Supplementary Table S1
	Antibody



