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Nested autoinhibitory feedbacks alter
the resistance of homeostatic adaptive
biochemical networks

Jörg Schaber1, Anastasiya Lapytsko1 and Dietrich Flockerzi2

1Institute for Experimental Internal Medicine, Medical Faculty, Otto von Guericke University,
Magdeburg, Germany
2Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany

Negative feedback control is a ubiquitous feature of biochemical systems, as is

time delay between a signal and its response. Negative feedback in conjunction

with time delay can lead to oscillations. In a cellular context, it might be ben-

eficial to mitigate oscillatory behaviour to avoid recurring stress situations.

This can be achieved by increasing the distance between the parameters

of the system and certain thresholds, beyond which oscillations occur. This

distance has been termed resistance. Here, we prove that in a generic three-

dimensional negative feedback system the resistance of the system is modified

by nested autoinhibitory feedbacks. Our system features negative feedbacks

through both input-inhibition as well as output-activation, a signalling com-

ponent with mass conservation and perfect adaptation. We show that these

features render the system applicable to biological data, exemplified by the

high osmolarity glycerol system in yeast and the mammalian p53 system.

Output-activation is better supported by data than input-inhibition and also

shows distinguished properties with respect to the system’s stimulus. Our

general approach might be useful in designing synthetic systems in which

oscillations can be tuned by synthetic autoinhibitory feedbacks.
1. Introduction
Negative feedback control is a fundamental and a ubiquitous feature of

biochemical systems [1–6] and can mediate adaptation [7–10], stabilize the abun-

dance of biochemical species [4,11,12], induce oscillations [3,5,13–16] and

accelerate response times [11,17]. In fact, negative feedbacks have been observed

in a wealth of biological systems ranging from mammalian cell cycle [13,18] to bac-

terial adaptation [8,19] and stress response in mammals [20] and yeast [21,22].

Another ubiquitous principle of biochemical systems is time delay between a

signal and its response, which can, for example, be caused by the time needed to

transcribe and translate biochemical information into cellular compounds. It is a

long-standing theoretical result that negative feedbacks in conjunction with time

delay can lead to stable oscillations [15,16,23]. Oscillatory behaviour brought

about by delayed negative feedbacks has been observed and analysed in a range

of biological systems, for example, the mammalian p53 system [24–26], and the

NF-kB system [27–29]. Both the p53 as well as the NF-kB system mediate adap-

tation to external stimuli and stress, such as, for example, DNA damage. It is

comprehensible that it might be beneficial to mitigate oscillatory behaviour

during adaptation in order to avoid recurring stress situations. This can be

achieved by moving the steady state of the system far away from certain thresholds,

beyond which oscillations occur. The distance between such thresholds and the

parameters of the system has been termed resilience and/or resistance. The

larger the resistance of a system, the better perturbations in external or internal con-

ditions, i.e. the systems parameters, can be absorbed, which otherwise would

trigger a change in stability properties of the system [30,31]. There exist several
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Figure 1. Wiring scheme of the generic integral feedback the model in (2.1).
Dashed components indicate model alternatives, which were considered for
concrete applications and the examples in the electronic supplementary
material. Alternative kinetics are not indicated. Reaction numbers correspond
to parameter numbers in (2.1). Specific wiring schemes can be found in the
electronic supplementary material along with the respective examples.
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definitions of resistance in the literature [31]. Here, based on

[31], we will refer to ‘resistance’ as the system’s response to per-

turbations of parameter values. As a quantitative measure of

resistance, we use the Euclidian distance of the parameter

vector to a critical threshold, beyond which stability properties

of the system change. The larger this distance, the more resistant

is the system.

In a recent study, using a parametrized mathematical

model, evidence was presented that during osmo-adaptation

in yeast, which is largely mediated by a delayed negative

integral feedback, the potential of oscillatory behaviour is

reduced by introducing nested direct negative feedbacks

[21]. Thus, there is evidence that in a concrete biological

system nested negative feedbacks can increase the resistance

of a biochemical network.

Here, using a generic three-dimensional model for

integral negative feedback control of a biochemical network,

we explore whether coupling autoinhibitory and delayed

negative feedbacks might be a general cellular mechanism

to increase resistance of a system. Our system has several dis-

tinguished features which generalize and extend former

studies [15,16,32]:

— our models include components, which resemble post-

translational modification of proteins conserving the

total protein abundance (mass conservation), rendering

the system more general and, at the same time, more

realistic, especially with respect to signalling cascades;

— our models use integral feedback properties, i.e. some

state variables of the system robustly track their desired

values independent from the input [8], which also renders

the systems more applicable to realistic situations, as

shown below; and

— in our models, the delayed negative feedback may operate

through both by inhibiting sensor inflow, like in [15], and

by activating sensor outflow, like in [9]. This has been

termed input and output control [10]. Here, we refer to

these two control types as input-inhibition and output-

activation, respectively. The type of used delayed negative

feedback has important implications with respect to what

actually stimulates the system. We show that an output-

activation feedback mechanism is better supported by a

range of data.

We prove that, in our systems, stable limit cycle oscil-

lations can occur owing to a Hopf bifurcation. Further, we

prove that the parameter region, where oscillations occur,

can be reduced by introducing autoinhibitory feedbacks.

Thus, by nesting autoinhibitory negative feedbacks into

delayed negative feedbacks the structural stability of the

system can be altered. This is true, in general, for input-

inhibition systems. However, there exist certain limitations

for this effect in output-activation systems. We also provide

computational evidence that the sensitivity of the steady

state with respect to parameter perturbations is decreased

in system with nested autoinhibitory feedback. We apply

our generic model to the high osmolarity glycerol (HOG)

system in yeast, and the mammalian p53 system demonstrat-

ing the applicability of our general framework to concrete

situations. We propose that this simple framework can be

used to design synthetic systems in which oscillatory behav-

iour can be tuned by nesting direct, possibly autoinhibitory,

and delayed negative feedbacks.
2. Results
2.1. The model
In the following, we consider the three-dimensional system

dx
dt
¼ k0qðzÞ � (k1xþ k2f1ðxÞf3ðzÞ);

dy
dt
¼ k3xðyT � yÞgðy;kyÞ � k4y

and
dz
dt
¼ k5yHðz; kzÞ � k6hðzÞ:

9>>>>>>>=
>>>>>>>;

ð2:1Þ

with positive parameters k0, k1, k2, k3, k4, k5, k6, yT, ky, kz

and non-negative initial conditions x0, y0 and z0. External

perturbations are simulated by modifying the value of k0

which otherwise mimics a basal stimulation of the system.

This system can be even more generalized by replacing all

linear functions x and y by smooth strictly increasing func-

tions (see the electronic supplementary material). Figure 1

displays a wiring diagram of the system (2.1) also indicating

different alternative model formulations that were tested in

the application described below.

In general, x(t) can be considered as a cellular sensor,

which reacts to an external stimulus k0. The component y(t)
mimics a signal transduction, which relays the input signal

coming from the sensor x(t) to the response component z(t),
which in turn negatively feeds back into the sensor x(t) via

f3(z) or via q(z). We assume f1,f3, and h to be strictly increas-

ing functions on R�0 vanishing at 0. The function q(z) is a

smooth, positive and strictly decreasing function with q(0) ¼

1. The functions f3(z) and q(z) represent the overall feedback

in the system, respectively. In the examples below, we consider

them to be mutually exclusive and refer to a feedback through

q(z) as input-inhibition, and a feedback through f3(z) as output-

activation. The functions g(y, ky) and H(z, kz) are smooth,

positive and decreasing in both arguments with

gð0;kyÞ ¼ Hð0;kzÞ ¼ gðy; 0Þ ¼ Hðz; 0Þ ¼ 1. The functions g(y,

ky) and H(z, kz) may represent autoinhibitory feedbacks,

where we later consider the additional parameters ky and kz,

which, among other parameters, shape the form of these

http://rsif.royalsocietypublishing.org/
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Figure 2. Signal functions, i.e. quasi-equilibrium sensor values x̂ as a func-
tion of the response variable z for the system (2.1) with either qðzÞ ; 1 and
f1ðxÞf3ðzÞ ¼ xz=ðKx þ xÞ (approximated by (2.2); black curve) or k2 ¼ 0
and qðzÞ ¼ 1=ð1þ KzhÞ (2.4) (grey curves).
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functions. We call them autoinhibitory, because the inhibition

of a component depends only on itself and not on other system

variables.

The term (yT2 y) leads to a model with an a priori bound y
for the second component in case its initial value y(0) is in [0,

yT]. This term is obtained by reducing a four-dimensional

ðx; y; ~y; zÞ system with yT ¼ yþ ~y; mimicking a reversible

post-translational modification, such as, for example, phos-

phorylation, of a protein y that does not affect the total

protein abundance yT (mass conservation).

Note that the non-negative orthant R3
�0 is positive invariant

for all models and, therefore, all models are biologically sound

in the sense that no negative values for the components

can occur. For further details, please refer to the electronic

supplementary material.

Taken together, we analyse a generic model that comprises

a range of special cases that have been addressed in the litera-

ture, for example, the Goodwin-type models [15,16,32], but

also addresses models that have not been thoroughly analysed

yet, especially the output-activation models, which will be

shown to be especially relevant in concrete situations.

2.2. Integral feedback property
Integral feedback control is an engineering strategy that is sup-

posed to ensure that the output of a system always adapts to its

desired value independent of noise and of perturbations of the

system parameters [8]. For two-dimensional systems, it has

been reported that the kinetic nature of h(z) is important in

this respect; for example, mass action kinetics for h(z) is not

sufficient to obtain perfect adaptation for y(t) [9,10]. For con-

venience of the mathematical analysis, we approximate a

zero-order h(z) by a smooth function h : ½0;1Þ ! ½0; 1� with

h(0) ¼ 0, and h(z) ¼ 1 for z � a . 0 and that is strictly increas-

ing on (0, a) and require that an equilibrium ẑ exists with

ẑ . a. Thus, hðẑÞ ¼ 1 and, for H ; 1, the equilibrium of the

second component

ŷ ¼ k6hðẑÞ
k5
¼ k6

k5

is constant and independent of the input signal in this

limiting case.

Taken together, the system (2.1) approximates a perfect

adaptor for zero-order h(z) with respect to y(t). Note that

the above approximation is only a theoretical one ensuring

that the solution stays in the positive orthant R3
�0, unlike

the approximation Kz ¼ 0 for Michaelis–Menten type h(z) ¼

z/(Kz þ z) for which negative solutions can occur. For con-

crete situations, it suffices to assume a sufficiently small Kz

for the Michaelis–Menten type h(z) implying hðẑÞ � 1.

2.3. The output-activation system is stimulated
by the difference between the internal and
external state

Zero-order kinetics for f1(x) has important implications

with respect to what is actually sensed and integrated as

error function by the system. Let us assume qðzÞ ; 1, a

linear feedback function f3(z) ¼ z, and that the sensor x(t) is

in quasi-equilibrium with respect to the response variable z.

Further, we approximate a zero-order f1(x), for example,

f1ðxÞ ¼ x=ðKx þ xÞ, by a smooth function f1 : ½0;1Þ ! ½0; 1�
with f1(0) ¼ 0, and f1(x) ¼ 1 for x � a . 0 and that is strictly
increasing on (0, a) and require that at the equilibrium

x̂ . a. Thus, f1ðx̂Þ ¼ 1 and

x̂ ¼ k0 � k2z
k1

. a ð2:2Þ

is a linear function of z. Thus, for zero-order f1ðxÞ ¼
x=ðKx þ xÞ and linear output-activation, the system (2.1) is

stimulated by the positive difference between the external

stimulus k0 and the scaled response variable z, i.e. the internal

state. As above, this approximation is introduced for conven-

ience of the theoretical analysis only. In real situations,

it suffices to assume a sufficiently small Kx as in figure 2.

In the case of mass action kinetics for f1(x),

x̂ ¼ k0

k1 þ k2z
ð2:3Þ

is related to the ratio between the external stimulus k0 and

the response variable z. A similar form for x̂ as in (2.3) is

obtained in a model with input-inhibition, i.e. k2 ¼ 0 and

qðzÞ ¼ 1

1þ Kzh ;

which was assumed in the classical model of Goodwin

[15,16,32]. Here, we obtain

x̂ ¼ k0

k1ð1þ KzhÞ : ð2:4Þ

In figure 2, we display quasi-equilibrium sensor values x̂ as a

function of the response variable z for the system (2.1) with

either a Hill-type input-inhibition term as in [15] and k2 ¼ 0,

or a zero-order output-activation term with linear feedback in

z, i.e. f1ðxÞf3ðzÞ ¼ xz=ðKx þ xÞ with qðzÞ ; 1, respectively.

Note that in a system where the feedback is mediated

through output-activation by a linear feedback with zero-

order degradation, i.e. f1(x) f3ðzÞ ¼ xz=ðKx þ xÞ and qðzÞ ; 1,

the response threshold k0/k2 is well defined for small Kx

and can directly be tuned through k2 (figure 2). Similarly,

for systems with Hill-type input-inhibition, i.e. k2 ¼ 0 and

qðzÞ ¼ 1=ð1þ KzhÞ, the response threshold is well defined

for large Hill factors h (grey dashed line in figure 2),

but can only indirectly be tuned through the half-saturation

constant K. In addition, the better the threshold is defined

by large Hill factors h, the sooner the sensor activation

http://rsif.royalsocietypublishing.org/
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saturates for decreasing z, whereas in a system with output-

activation, sensor activation is linear below the activation

threshold k0/k2. Conversely, when in a system with Hill-type

input-inhibition, the sensor approximates a linear function

in z (grey solid line in figure 2), the response threshold is

poorly defined.

Taken together, the type (input-inhibition or output-

activation) and kinetic nature (mass action or saturating) of

the overall negative feedback determines the signal, which

stimulates the system. In the case of zero-order output-

activation, the system is linearly stimulated by the difference

between internal and external conditions; otherwise, the

stimulus is nonlinear and may even be step-like. In the

examples below, we show that the data clearly support

output-activation models rather than support nonlinear

Goodwin-type input-inhibition models.
2.4. The Hopf bifurcation
In the system (2.1), stable limit cycles can occur due to a Hopf

bifurcation. Shortly, any steady state Ê ¼ ðx̂; ŷ; ẑÞT of the

system (2.1) is given by

ŷ ¼ YðẑÞ :¼ k6hðẑÞ
k5Hðẑ; kzÞ

, yT ; x̂ ¼ XðẑÞ :¼ k4YðẑÞ
k3GðYðẑÞ;kyÞ

:

ð2:5Þ

We define G(y,ky)¼ (yt2 y)g(y, ky) and the parameter value

k̂0 ¼ Pðẑ; k1Þ :¼ 1

qðẑÞ ðk1x̂þ k2f1ðx̂Þf3ðẑÞÞ: ð2:6Þ

The Jacobian at the equilibrium Ê ¼ ðx̂; ŷ; ẑÞ is of the form
 e
1
1:20130971
JðEÞ ¼

�A 0 �B
C �D 0

0 E �F

2
64

3
75 ¼ �½k1 þ k2f 01ðx̂Þf3ðẑÞ� 0 �½k̂0jq0ðẑÞj þ k2f1ðx̂Þf 03ðẑÞ�

k3Gðŷ;kyÞ �½k4 þ k3x̂jG0ðŷ;kyÞj� 0

0 k5Hðẑ; kzÞ �½k5ŷjH0ðẑ; kzÞj þ k6h0ðẑÞ�

2
64

3
75:
and has the characteristic Hurwitz-polynomial

l3 þ D2l
2 þ D1l

1 þ D0, with positive

D2 ¼ AþDþ F; D1 ¼ ADþ AFþDF;
D0 ¼ ADFþ BCE:

So, any real eigenvalue of J is negative. The necessary and

sufficient condition for a single pair +iv ¼+i
ffiffiffiffiffiffiffi
D1

p
ðv . 0Þ

of pure imaginary eigenvalues is D0 ¼ D1 D2, i.e.

BCE ¼ ðDþ FÞðA2 þ AðDþ FÞ þDFÞ : ð2:7Þ

evaluated at Ê. With

A ¼ k1 þ A0; A0 :¼ k2f 01ðXðẑ;kyÞÞf3ðẑÞ

B ¼ k1B1 þ B0; B1 :¼ Xðẑ;kyÞ
jq0ðẑÞj
qðẑÞ ;

B0 :¼ k2f1ðXðẑ; kyÞÞ f3ðẑÞ
jq0ðẑÞj
qðẑÞ þ k2f1ðXðẑ; kyÞÞf 03ðẑÞ;

we consider (2.7) as an equation of the parameters k1 and ẑ that

is to be solved in the form k1 ¼ K1ðẑÞ. The curve K1ðẑÞ, given by

the unique positive solution k1 ¼ K1ðẑÞ of the quadratic

equation, derived from (2.7),

k2
1 þ k1R1ðẑÞ � R0ðẑÞ ¼ k2

1 þ k1 2A0 þDþ F� B1CE
Dþ F

� �

þ ðA0 þDÞðA0 þ FÞ � B0CE
Dþ F

¼ 0: ð2:8Þ

evaluated at Ê, indicates possible Hopf-bifurcation points in the

k1-ẑ-plane. The necessary and sufficient condition of the exist-

ence for a positive k1-solution of (2.8) is R0ðẑÞ . 0, i.e.

B0CE . ðDþ FÞðA0 þDÞðA0 þ FÞ: ð2:9Þ

Taken together, having chosen the equilibrium com-

ponent ẑ; we define x̂ and ŷ according to (2.5), solve (2.8)

for k1 ¼ K1ðẑÞ . 0, provided (2.9), and set k̂0 ¼ Pðẑ; k1; kyÞ
according to (2.6). Then, the possible Hopf-bifurcation point

is given by Ê ¼ ðx̂; ŷ; ẑÞT for the critical parameters k1 and k̂0.

In this case, the transversality condition for a Hopf

bifurcation can be generically fulfilled (see the electronic
supplementary material, where also further details of the

proof are supplied). Thus, the system (2.1) can show stable

oscillations owing to a Hopf bifurcation.

A Hopf bifurcation can also occur for a more general class

of systems, where all linear functions x and y in the system

(2.1) are replaced by smooth strictly increasing functions

and with or without the term (yT 2 y) (see the electronic

supplementary material).
2.5. Autoinhibition decreases the oscillatory
k1-̂z-plane

In the electronic supplementary material, we prove that the

k1-ẑ-plane permissive for oscillations decreases with increasing

autoinhibition either through g(y, ky) or H(z, kz), i.e. for the

curve K1ðẑÞ that divides the k1-ẑ-plane into regions with and

without stable oscillations it holds

dK1ðẑ; kyÞ
dky

, 0 and
dK1ðẑ;kzÞ

dkz
, 0 8 ẑ . 0 : ð2:10Þ

Again, there is a notable difference between models with

input-inhibition, i.e. k2 ¼ 0, and output-activation, i.e. qðzÞ ; 1.

For models with input-inhibition relation, (2.10) is always

true. This has been shown before for the classical Goodwin-

type models with Hill-type q, i.e. qðzÞ ¼ 1=ð1þ KzhÞ [32].

However, opposed to these classical models, where a high

Hill coefficient (cooperativity) of h � 8 was necessary to

obtain oscillations, this is not necessary in our framework (2.1)

(see the electronic supplementary material, figures S4 and S7).

For models with output-activation condition (2.10) only

applies, if f1ðx̂Þ ¼ 1, i.e. if at the equilibrium f1 is of zero-

order such that f 01ðx̂Þ ¼ 0. This situation can be approxima-

ted, e.g. by low Kx values for f1ðxÞ ¼ x=ðKx þ xÞ. Note that

this was also a prerequisite for the quasi-steady state x̂ to

be a linear function of z as in (2.2). However, to reduce the

parameter region for oscillations for the output-activation

system, f 01ðx̂Þ ¼ 0 is sufficient, but not necessary (for

examples, refer to the electronic supplementary material).
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ky ¼ 0 and ky ¼ 40, respectively. (c) Simulations for ð̂z; k1Þ ¼ ð0:4; 0:2Þ and ky ¼ 0. (d ) Simulations for (z0, k1) ¼ (0.4, 0.2) and ky ¼ 40. Other parameters:
k2 ¼ 0.3, k3 ¼ k5 ¼ 0.1, k4 ¼ k6 ¼ 0.02, Kx ¼ 0.0001, Kz ¼ 0.05, m ¼ 2.
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Taken together, we provide formal proof that the struc-

tural stability of the system (2.1) can be altered by

introducing autoinhibitory feedbacks. Moreover, the distance

between the bifurcation threshold and a given k1-ẑ pair can be

modulated by introducing autoinhibitory negative feedbacks.

Thus, nested autoinhibitory feedbacks can modulate the

resistance of the system (2.1). Figure 3 illustrates these theor-

etical results for an output-activation system. For other

examples, please refer to the electronic supplementary

material, figures S2–S7.

In figure 3a, we show bifurcation curves in the k1-ẑ-plane, for

different values of ky, i.e. with (ky¼ 40) or without (ky¼ 0) auto-

inhibitory feedback for a concrete system. The area below the

curve, where oscillations occur, is reduced with ky increasing.

The larger ky, i.e. the stronger the autoinhibitory feedback, the

smaller the area below the curve. The dot in figure 3a indicates a

concrete pair of k1-ẑ, to which the computed eigenvalues in

figure 3b and dynamics in figure 2c,d correspond. The distance

between a point in the k1-ẑ and the bifurcation curve K1ðẑÞ can

be interpreted as a measure for resistance. Note that a change

in ẑ can also be interpreted as a change in parameter k̂0,

because there is a 1 : 1 relationship between ẑ and k̂0 (see (2.6)).

Without autoinhibitory feedback (ky¼ 0), the bifurcation par-

ameters are below the bifurcation curve and, consequently, we

have a single pair of complex eigenvalues with positive real

parts (black dots in figure 3b) corresponding to stable oscillations

(figure 3c). With autoinhibitory feedback (ky¼ 40), the bifurcation
parameters are above the bifurcation curve and, consequently,

all real parts of the eigenvalues are negative (circles in figure 4b),

and the system tends to a stable equilibrium (figure 3d).

For convenience, we conducted the theoretical analysis by

parametrizing the system with respect to the steady state in ẑ
and considered k1 as the bifurcation parameter. However, as

illustrated by the computational analysis of the HOG system

and the p53 system below, all tested parameters in the system

may be taken as bifurcation parameters (figures 4 and 7; elec-

tronic supplementary material, S9 and S10). Accordingly, the

introduction of autoinhibitory feedbacks reduces the region

for oscillations for those parameters as well.
2.6. Application to the high osmolarity glycerol system
The HOG system in yeast mediates adaptation to a hyper-

osmotic shock and is one of the best-studied eukaryotic

signalling pathways [33]. Several mathematical models of

different complexity have been developed for this system

[21,22,34,35]. In short, the signal that triggers response, and

adaptation is supposedly related to volume [36,37], which, in

turn, is proportional to the difference between internal and

external osmotic pressure [38]. The signal coming from the

membrane is transduced via a stress-activated protein kinase

(SAPK) cascade, which culminates in the activation the SAPK

Hog1. Hog1 translocates to the nucleus-activating transcription

factors that lead to the upregulation of glycerol production,

http://rsif.royalsocietypublishing.org/
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Table 1. HOG candidate models. n, number of data points; k, number of parameters; SSR, weighted sum of squared residuals; AICc, Akaike information criterion
corrected for small sample size; AICw, Akaike weights.

rank model no. d n k SSR AICc AICw

1 6 (0,1,1,0) 67 8 7.5 61.5 0.8

2 8 (0,1,1,1) 67 9 7.5 64.4 0.2

3 2 (0,1,0,0) 67 6 15.3 104.6 0

4 4 (0,1,0,0) 67 7 15.3 107.2 0

5 11 (1,0,1,0) 67 8 16.3 113.9 0

6 9 (1,0,0,0) 67 6 44.3 175.9 0

7 10 (1,0,0,1) 67 7 44.7 179.0 0

8 12 (1,0,1,1) 67 9 44.7 184.2 0

9 1 (0,0,0,0) 67 5 52.0 184.1 0

10 3 (0,0,0,1) 67 6 53.2 188.1 0

11 5 (0,0,1,0) 67 7 52.0 189.1 0

12 7 (0,0,1,1) 67 8 53.2 193.2 0
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which, in turn, increases the intracellular osmolarity and

turgor, thereby mediating adaptation. There is evidence that

in this system oscillatory behaviour might indeed be avoided

by nested negative feedbacks [21]. Therefore, we tested

whether our general framework is supported by available

data, and, whether the data support autoinhibitory feedbacks.

We fitted different candidate models representing different

hypothesis about the underlying biochemical mechanisms

and ranked them according to the Akaike information criterion

(AIC). The candidate models were specified versions of our

general framework (2.1) (figure 4a):

dx
dt
¼ k0 þNaCl

ð1þ KzhÞd1
� k1xþ ð1� d1Þk2

xz

ðKx þ xÞd2

 !
;

dy
dt
¼ k3x

ðyT � yÞ
ð1þ kyymÞd3

� k4y

and
dz
dt
¼ k5y� k6

z

ðKz þ zÞd4
;

9>>>>>>>>>>=
>>>>>>>>>>;
ð2:11Þ
where d ¼ ðd1; d2; d3; d4Þ and di [ {0; 1}; i ¼ 1; . . . ; 4 indicate

model alternatives. Here, x represents a putative sensor of

volume change or the difference between internal and external

water potentials, i.e. z and k0 þ NaCl, respectively. The com-

ponent y represents the adaptive phosphorylated Hog1 and z
represents the integrator glycerol (figure 4a). Specifically, we

tested the kind of delayed feedback, i.e. input-inhibition (d1 ¼

1) or output-activation (d1 ¼ 0), the existence of autoinhibition

in the signalling component y (d3) and two different kinetics

for f1(x) and h(z), respectively, i.e. mass action (d2, d4 ¼ 0) or

Michaelis–Menten kinetics (d2, d4 ¼ 1). The combination of

all these model alternatives yielded 12 different models. Here,

we assumed f3(z) ¼ z and H(z,kz) ; 1. For parameters of the

best-ranked model, please refer to the electronic supplementary

material, table S2. For more details on the model and parameter

estimation, please refer to the Methods section and the elec-

tronic supplementary material. A COPASI implementation of

the best-ranked model together with the data and an systems

biology mark-up language (SBML) [39] version is also pro-

vided in the electronic supplementary material. The results of

fitting and ranking are displayed in table 1.
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The model with zero-order kinetics in f1(x), autoinhibition

in y and mass action kinetics in h(z) is ranked best (model

no. 6, d ¼ (0, 1, 1, 0)). This corresponds to a model, which

senses the difference between external and internal osmolar-

ity and shows no perfect adaptation. This model is closely

followed by the same model, but with perfect adaptation

(model no. 8, d ¼ (0, 1, 1, 1)). The best model without auto-

inhibition in y is on the third place (model no. 2, d ¼ (0, 1,

0, 0)). The best two models are able to recapitulate Hog1

phosphorylation and intracellular glycerol data for a range

of different conditions (figure 5). Model no. 2 can also well

recapitulate Hog1 osmotic stress and glycerol data, but

cannot recapitulate well the Hog1 inhibition experiment (see

electronic supplementary material, figure S8). The models

with an input-inhibition did not give a good approximation

to the data compared with the best-ranking models (table 1).

Apparently, both the system with and without autoinhibi-

tory feedback can show adaptive behaviour. Analysing the

stability of the steady state as a function of the parameters,

it becomes obvious that the parameter region, where oscil-

lations occur, is much more distant from the actually fitted

parameters for the model with (model no. 6) than for the

model without autoinhibition (model no. 2). Thus, the resist-

ance of the adaptation is increased in the system including

the autoinhibitory feedback. Perturbing the initial steady

state, which was also set in this case, had no influence on

the stability, i.e. the system is resistant with respect to a

change in initial steady-state concentrations (see the electronic

supplementary material, figure S9). In figure 6, we plot the

stability regions of the steady state in the two-dimensional

k5-NaCl and k5-k1 plane. For other parameter combinations,

please refer to the electronic supplementary material, figure
S9. Notably, the parameters of both the system with autoinhibi-

tion (model no. 6) and the system without autoinhibition

(model no. 2) are rather similar (black and grey dots in figure

6 and the electronic supplementary material, S9). This indicates

that the stability of a system can be modified by changing the

system’s structure by autoinhibition without significantly

affecting other system parameters and, therefore, its dynamics

(figure 5 and the electronic supplementary material, S8).

It can be anticipated that in homeostatic adaptive systems

the steady state should be robust against parameter pertur-

bations. It has been shown that negative feedbacks can

increase the robustness of the steady states with respect to

input noise and parameter perturbations [4,11,12]. We hypoth-

esized that nested autoinhibitory feedbacks can increase the

robustness of the steady state. Therefore, we compared the

steady-state variability with respect to parameter perturbation

of the best model with feedback (model no. 6) and the best

model without feedback (model no. 2) after an osmotic shock

of 0.2 M NaCl in a Monte Carlo analysis. Specifically, we per-

turbed all free parameters of the system simultaneously by

sampling 1000 times from a uniform distribution ranging

from half to double of its original value. Subsequently, we cal-

culated the distance between the original fitted steady state and

the perturbed steady states (figure 7).

The variance of the distance between the original and

the perturbed steady states of the sensor x is significantly smal-

ler ( p , 0.01) for the model with autoinhibitory feedback

(model no. 6) compared with the model without auto-

inhibitory feedback (model no. 2; figure 7). In addition, the

respective variance for components y is smaller ( p , 0.01;

the electronic supplementary material, table S1). For the

response z, no significant difference was detected. Thus, in
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this concrete case, the autoinhibitory feedback increases

robustness of the steady states after osmotic shock for the

sensor and activated Hog1.

Taken together, our three-dimensional framework is able to

recapitulate well a range of data for different conditions for the

HOG system. Model discrimination suggests that in the HOG

system there are autoinhibitory feedbacks nested within the

glycerol-mediated feedback, and the system is stimulated by

the difference between internal and external conditions. This

is well supported by other studies [17,21]. Moreover, the auto-

inhibitory feedback renders the steady state of the system more

resistant in the sense that parameter perturbations and external

stress conditions are unlikely to drive the system beyond the

threshold where oscillations occur.
2.7. Application to the p53 system
The p53 system is one of the best-studied human signalling

pathways, which is activated by various stress signals, includ-

ing DNA damage [40,41]. Interestingly, p53 phosphorylation

can exhibit both oscillatory behaviour and sustained acti-

vation, depending on the stimulus, which imply different

cell fates [26,42]. A range of models have been developed for

this pathway to understand dynamics and variability of the

protein circuitry [24,25,43]. Here, we tested whether our mod-

elling framework can also explain p53 and Mdm2 dynamics,

possibly giving new insights into the feedback regulation cir-

cuitry of the system. To this end, we fitted again different

model alternatives based on our general framework (2.1) to

a published average oscillation pattern of p53 and Mdm2

dynamics after DNA damage [25] (figure 4b):

dx
dt
¼ k0

ð1þKzhÞd1
� k1xþð1�d1Þk2

x

ðKxþxÞd2

znd3

ðKn
1þznÞd3

 !
;

dy
dt
¼k3x�k4y

and
dz
dt
¼k5y

1

ð1þkzzmÞd4
�k6

z

ðKzþzÞd5
;

9>>>>>>>>>=
>>>>>>>>>;

ð2:12Þ
where d ¼ (d1, d2, d3, d4, d5), di [ {0; 1}; i ¼ 1; . . . ; 5, indicate

model alternatives. Now, our model components are inter-

preted such that the signal x is p53 activation (sensing e.g.

DNA damage), and the transducer y is an intermediate

component, e.g. Mdm2 RNA. Consequently, for the latter

component, no mass conservation is assumed, i.e. without

the term (yt 2 y) in (2.1). The response z represents Mdm2

protein concentration which, in turn, mediates p53 degra-

dation. Like for the HOG model, we tested two kinetic

alternatives for reactions f1(x), and h(z), i.e. mass action

(d2, d5 ¼ 0) or Michaelis–Menten kinetics (d2, d5 ¼ 1). In the

p53 models, we assumed gðy;kyÞ ; 1, because, assuming the

transducer to be RNA, a fast autoinhibitory feedback

seemed unlikely. Therefore, we tested autoinhibition in com-

ponent z by alternatively introducing Hðz; kzÞ ¼ 1=ð1þ kzzmÞ
(d4), assuming the fast autoinhibitory feedback to act at the

protein level by, e.g. post-translational modifications. The kin-

etic nature of the negative feedback of Mdm2 on p53 remains

elusive. Therefore, we also tested here two different alterna-

tives for f3(z), i.e. mass action (d3 ¼ 0) and Hill-type kinetics

(d3 ¼ 1). Additionally, we tested, as for the HOG system, the

possibility that the negative feedback acts by input-inhibition

(d1 ¼ 1) or by output-activation (d1 ¼ 0). Combination of the

different possibilities results in 20 different models. The

result of the fitting and ranking is displayed in table 2. For par-

ameters of the best-ranked model, please refer to the electronic

supplementary material, table S3. A COPASI implementation

of the best-ranked model together with the data and an SBML

version is also provided in the electronic supplementary

material.

The two best-ranked models (no. 11, d ¼ (0, 0, 1, 0, 1) and

no. 15, d ¼ (0, 0, 1, 1, 1)) feature mass action kinetics in f1(x),

Hill-type kinetics in f3(z), and zero-order kinetics in h(z)

and their fit is significantly better than for the other model

candidates. Whether or not these two models have an auto-

inhibitory feedback does not influence the goodness fit

itself (sum of squared residual (SSR) in table 2), but as the

model without autoinhibitory feedback has two parameters

less, it is clearly ranked first. The fit of the best approximating

model no. 11 is shown in figure 8.
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The p53 system can show both oscillatory as well as

sustained behaviour, depending on the stimulus [26,42].

Therefore, we asked the question whether the oscillations of

the best approximating model can be stabilized by introdu-

cing a fast autoinhibitory feedback. This is only true in

general, i.e. irrespective of the other parameters, when f1(x)

has zero-order kinetics at the equilibrium, which is not the

case for the best approximating p53 model no. 11. However,

with the given set of parameters, our fitted model can indeed

be stabilized by the introduction of an autoinhibitory feed-

back of the form Hðz;kzÞ ¼ 1=ð1þ kzzmÞ, with kz ¼ 1.95 and

m ¼ 3 (figure 9).
Figure 9 depicts the stability of the steady state of the best

approximating model with and without autoinhibitory feed-

back as a function of selected parameters (for additional pairs

of parameters, refer to the electronic supplementary material,

figure S10). Like for the HOG model, the unstable region

diminishes through the introduction of a nested autoinhibi-

tory feedback. Moreover, the stability of the system changes

upon addition of the nested autoinhibitory feedback, ren-

dering the system in the stable zone after introduction of an

autoinhibitory feedback.

For the p53 system, a Monte Carlo analysis of the steady

state with respect to parameter perturbations also indicated

that the system with autoinhibitory feedback is less sensitive

(figure 10).

The variance of the distance between the original and the

perturbed steady states for all steady states is significantly

smaller ( p , 0.001) for the model with autoinhibitory feed-

back (model no. 15) compared with the model without

autoinhibitory feedback (model no. 11; figure 10 and the

electronic supplementary material, table S4).

Taken together, our simple framework suggests a

mechanism how the p53 signalling system can change its

dynamic behaviour upon different stimuli. Certain stimuli

might activate components which introduce a nested auto-

inhibitory feedback. This changes the stability landscape of

the system, shifting it from an oscillatory regime into a

stable one. Thus, the p53 system depicts low resistance to par-

ameter perturbations in order to be able to change its stability

properties depending on environmental conditions.
3. Discussion
The ability to adapt to perturbations in external or internal

conditions without losing structural stability is a fundamen-

tal feature of biological systems, including ecological,

climate or biochemical systems. Adaptation is often mediated

by negative feedbacks [1,7]. In biochemical systems, negative

feedbacks inevitably come with time delays, which may lead

to oscillatory behaviour both damped and sustained [15,23].

In some instances, oscillatory behaviour might oppose effi-

cient adaptation owing to recurring stress. In such cases,

the distance between the state of a system and the threshold

beyond which oscillations occur, i.e. the systems resistance,

should be large. This way, perturbations can be absorbed

without affecting the structural stability of the system. In

other instances, however, it might be beneficial to be able

to switch between different dynamic regimes. It has been

shown that the difference between a sustained or oscillatory

signal can control cell fate [26,44], and that oscillation fre-

quency can encode biochemical information [45]. In that

case, resistance of a system should be low to be able to

easily shift between different stability regimes. It might also

be desirable to synthetically engineer cellular systems in a

way such that oscillatory behaviour can be tuned by an

independent artificial component.

For a three-dimensional system, it has been observed that

coupling autoinhibitory and delayed negative feedbacks

reduces the probability of occurrence of stable limit cycles [5].

For the simple gene transcription network model with input-

inhibition proposed by Goodwin [15], it has been shown that

nested self-repressing feedback loops have the potential to sup-

press oscillations [32]. Here, we propose a generic mechanism,
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Table 2. p53 candidate models. n, number of data points, k, number of parameters; SSR, weighted sum of squared residuals; AICc, Akaike information criterion
corrected for small sample size; AICw, Akaike weights.

rank model d n k SSR AICc AICw

1 11 (0,0,1,0,1) 91 10 1.8 276.8 1.0

2 15 (0,0,1,1,1) 91 12 1.8 268.8 0.02

3 16 (0,1,1,1,1) 91 13 2.8 226.4 0

4 10 (0,1,1,0,0) 91 10 2.9 231.1 0

5 14 (0,1,1,1,0) 91 12 3.0 225.6 0

6 7 (0,0,0,1,1) 91 10 4.5 7.3 0

7 3 (0,0,0,0,1) 91 8 5.0 12.2 0

8 4 (0,1,0,0,1) 91 9 5.0 14.2 0

9 8 (0,1,0,1,1) 91 11 5.1 20.7 0

10 9 (0,0,1,0,0) 91 9 5.6 25.1 0

11 13 (0,0,1,1,0) 91 11 5.6 30.3 0

12 18 (1,0,0,0,0) 91 9 10.5 81.8 0

13 20 (1,0,0,1,1) 91 11 11.0 91.6 0

14 17 (1,0,0,0,0) 91 8 12.0 91.6 0

15 6 (0,1,0,1,0) 91 10 12.4 99.9 0

16 2 (0,1,0,0,0) 91 8 13.3 101.0 0

17 19 (1,0,0,1,0) 91 10 16.1 123.1 0

18 1 (0,0,0,0,0) 91 7 16.7 119.1 0

19 5 (0,0,0,1,0) 91 9 16.7 124.0 0

20 12 (0,1,1,0,1) 91 11 18.1 136.7 0
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how adaptive homeostatic biochemical systems can control

both its dynamic response and its distance to a threshold

beyond which these dynamics are drastically altered. We pro-

vide complete proof that in generic three-dimensional

homeostatic adaptive biochemical networks both with input-

inhibition as well as with output-activation oscillations may

arise due to a Hopf bifurcation. We further prove that nes-

ted autoinhibitory feedbacks diminish the parameter space in

which the steady state becomes unstable and oscillations

occur. For systems with input-inhibition, the region for
oscillations is generally reduced by autoinhibitory feedbacks.

This is also true for models with a signalling module (mass

conservation) and perfect adaptation (zero-order h(z)). The

latter renders input-inhibition systems susceptible to oscil-

lations also for low cooperativity in the input-inhibition

which extends former studies [16,32,46]. For our system with

output-activation, this is only true irrespective of the par-

ameters, when the feedback-activated output is of zero-order.

Thus, this is a sufficient, but not necessary condition. We

show that this condition also has as the consequence that
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the system is stimulated by the positive difference between

external and internal conditions. Our applications to the

HOG and the p53 system suggest that zero-order output-

activation might be a biologically more relevant feedback

mechanism than input-inhibition. For the adaptive HOG

system, we also demonstrate that a nested autoinhibi-

tory feedback can alter the structural stability of the system

without significantly affecting parameters of the system that

are not involved in this feedback. Therefore, autoinhibition

can alter stability properties of a system without affecting

dynamic properties within a certain range of conditions.

Owing to the generality of our model, we may hypothesize

that other kinds of nested feedbacks also have the potential to

suppress oscillatory behaviour. Here, we analysed only auto-

inhibitory feedback for mathematical convenience. However,

in the special case of a Goodwin-type model, it has been

shown that a nested feedback from z to y also diminishes the

parameter region in which oscillations occur [32]. In addition,

for a four-dimensional model, it has even been demonstrated

that a feedforward loop within an integral negative feedback

also diminishes the parameter regions in which oscillations

occur [21].

The application of our system to the HOG and the p53

system also provides evidence that nested autoinhibitory feed-

backs increase the robustness of the steady state with respect to

parameter perturbations. For the ERK pathway, it has been

observed that a fast post-translational feedback mechanism

confers robustness to steady-state phosphorylation of ERK

[47], which supports our analysis.

Our results may have implications to understand the com-

plex dynamics of a range of signalling pathways. Not only has

the p53 system been shown to exhibit different dynamics

depending on the stimulus. The ERK pathway can show both

oscillatory and adaptive dynamics, which are likely due to

different feedback mechanisms that act on different timescales

and that are activated depending on the stimulus [47–49]. The

NF-kB system can show damped oscillations, which are likely

due to different feedback mechanisms acting on different time-

scales [27]. It seems that the coupling of fast post-translational
and delayed transcriptional feedbacks is a general feature of

signalling pathways that allows fine-tuning of dynamics and

steady-state features. The role of fast post-translational nega-

tive feedbacks in this respect is apparently either to suppress

oscillatory behaviour or stabilize steady-state protein levels

or both.

The presented theoretical results on suppressing oscil-

latory behaviour induced by Hopf bifurcations may be

useful in designing synthetic systems in which oscillations

can be tuned by synthetic autoinhibitory feedbacks. This

may be useful for studying cell fate decisions, as, for example,

in the p53 or the ERK system. For the HOG system, the para-

metrized models show that even without autoinhibitory

feedback osmo-adaptation is extremely stable. For this

system, it seems unlikely that oscillations can be induced arti-

ficially by weakening the reported autoinhibitory feedbacks.
4. Material and methods
4.1. Data
We made extensive use of published data to parametrize

dynamic models of the HOG pathway and the p53 pathway.

The dataset used for model parametrization and discrimina-

tion of the HOG model was taken from [17]. This dataset

consists of time series of phosphorylated Hog1 under several

hyper-osmotic shock conditions, for wild-type and different

mutants yeast, for up to 2 h after hyper-osmotic shock

(figure 5a,b). Additionally, we used a time series of glycerol

published in [22] (figure 5c). These datasets, although coming

from different sources, are comparable because they were pro-

duced using the same genetic background and under the same

culture conditions. The dataset used for model parametrization

and discrimination of the p53 model was digitized from the

electronic supplementary material, figure S6 of the supple-

mentary material of [25]. These data are meant to resemble

an idealized undamped oscillation with peak characteristic

that correspond to the average peak characteristic of oscillating

cells. For the ranking procedure, we considered only 91 data
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points, because the last three periods in figure 8 are repetitions

of the former oscillations.

4.2. Model fitting, ranking and selecting
The models were implemented and fitted with the free software

COPASI (v. 4.7, build 34) [50]. We used the evolutionary

programming algorithm to fit the models, where the popula-

tion size was set to 10 times the number of parameters and

the number of generations was limited to 10 times the num-

ber of parameters. When estimated parameters hit parameter

boundaries, the boundaries were relaxed and the model refitted

until the fit converged within defined parameter boundaries.

Model ranking was performed using modelMaGe [51,52].

For model ranking, we calculated the Akaike information cri-

terion corrected (AICc) for small sample sizes [53] for each

candidate model:

AICc ¼ 2k þ n ln
2pSSR

n

� �
þ 1

� �
þ 2kðk þ 1Þ

n� k � 1
;

where SSR is the sum of squared residuals of the fit, k is the

number of parameters and n is the number of data points. The
AICc is an information-theory-based measure of parsimonious

data representation that incorporates the goodness of the fit

(SSR) as well as the complexity of the model (k), thereby giving

an objective measure for model selection and discrimination.

In order to select and compare the best approximating

model(s), we calculated the Akaike weights (AICw) [53]

AICwi ¼
e�1=2DiPR

r¼1 e�1=2Dr
;

where Di ¼ AICi 2 AICmin, with AICi being the AICc for model

i, i ¼ 1,. . ., R according to ranking and AICmin the minimal

AICc. The AICws can be considered as the weight of evidence

in favour of a model given as a number between 0 and 1,

i.e. the higher the weight, the closer the model is to the hypo-

thetical true model [53]. We considered those models as best

approximating that had an AICw . 0:125.
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1 Hopf bifurcation

1.1 The model

With positive parameters k0, k1, k2, k3, k4, k5, and k6 we consider a class of smooth 3D-systems of the
form

dx

dt
= k0 q(z)−

(
k1 f0(x) + k2 F (x, z)

)
,

dy

dt
= k3 f2(x)G(y)− k4 g1(y) ,

dz

dt
= k5 g2(y)H(z)− k6 h(z) .

(1.1)

for non-negative initial values x(0), y(0) and z(0). We assume f0, f2, g1, g2 and h to be strictly increasing
functions on R≥0 vanishing at 0. The smooth function F (x, z) is to be non-negative on R2

≥0 and to vanish
on the boundary of R2

≥0. Moreover, the partial derivatives Fx and Fz are assumed to be non-negative on
R2
≥0. The function q(z) is a smooth, positive and strictly decreasing function with q(0) = 1, the function

H(z) is alike. Finally, the function G(y) is

G(y) =(yT − y) g(y) or (1.2a)
G(y) =g(y) (1.2b)

with g(y) being either identically 1 or a smooth, positive and strictly decreasing function with g(0) = 1,
and, in case of (1.2a), for a positive parameter yT . Note that the non-negative orthant R3

≥0 and, more
specifically, Q = {0 ≤ x ≤ k0/k1, 0 ≤ y, 0 ≤ z} is positive invariant.

The model (1.1) with G(y) of the form (1.2a) represents a model with an a-priori bound y ≤ yT
for the second solution component in case its initial value y(0) is in [0, yT ]. This represents a reduced
4-dimensional (x, y, ỹ, z)-system with yT = y+ ỹ, mimicking post-translational modifications of a protein
y without affecting the total protein abundance yT . We will refer to a model with G(y) of the form (1.2a)
to a model with signalling component. Note that

QT = {0 ≤ x ≤ k0/k1, 0 ≤ y ≤ yT , 0 ≤ z}

is positive invariant in this case. All general results hold for both types of G(y), however, we will mainly
consider models where G(y) is of the form (1.2a).

The functions g(y), and H(z) represent auto-inhibitory feedbacks, whereas the functions q(z) and
F (x, z) represent delayed negative feedbacks. The feedback q(z) is inhibiting the inflow reaction, as in



2

the classical model of Goodwin [1, 2], whereas the feedback F (x, z) is activating the outflow reaction for
the species x. In the special cases considered in 2.1 and 2.2, both for the auto-inhibitory as well as for
the delayed negative feedbacks, only one of these feedbacks is considered to be active at a time.

1.2 The steady state

Any steady state Ê = (x̂, ŷ, ẑ)T of (1.1) in R3
≥0 is given by

ŷ = Y (ẑ) := g−1
2

( k6 h(ẑ)
k5H(ẑ)

)
, x̂ = X(ẑ) := f−1

2

(k4 g1(Y (ẑ))
k3G(Y (ẑ))

)
(1.3)

for the parameter value

k̂0 = P (ẑ, k1) :=
1
q(ẑ)

(
k1 f0(X(ẑ)) + k2 F (X(ẑ), ẑ)

)
. (1.4)

provided the inverses g−1
2 and f−1

2 exist (including the condition G(Y (ẑ)) > 0), i.e., provided
k6 h(ẑ)
k5H(ẑ)

is

in the range of g2 and
k4 g1(Y (ẑ))
k3G(Y (ẑ))

is in the range of f2. Note that X and Y in (1.3) are strictly increasing

functions of ẑ. Hence P is strictly increasing in ẑ as well as in k1. Thus, there is a 1-1 correspondence
between the parameter k̂0 and the third component of the equilibrium Ê. For models with G(y) being
of the form (1.2a) and steady states in QT , the ẑ is to be in (0, qT ] with Y (qT ) = yT . Consequently, k̂0

ranges in (0, P (qT , k1)] and the steady state Ê is unique in QT .

The Jacobian at equilibrium Ê = (x̂, ŷ, ẑ)T is of the form

J(ẑ, k1) =

 −A 0 −B
C −D 0
0 E −F



:=


−
[
k1f
′
0(x̂) + k2 Fx(x̂, ẑ)

]
0 −

[
k̂0|q′(ẑ)|+ k2 Fz(x̂, ẑ)

]
k3 f

′
2(x̂)G(ŷ) −

[
k3 f2(x̂) |G′(ŷ)|+ k4g

′
1(ŷ)

]
0

0 k5g
′
2(ŷ)H(ẑ) −

[
k5 g2(ŷ) |H ′(ẑ)|+ k6 h

′(ẑ)
]
 .

(1.5)
Thus, at a positive fixed point Ê, one has the characteristic polynomial

det(λ I − J(ẑ, k1)) = λ3 + ∆2λ
2 + ∆1λ+ ∆0

with positive
∆2 = A+D + F, ∆1 = AD +AF +DF, ∆0 = ADF +BCE .

So, any real eigenvalue of J(ẑ, k1) is negative. The necessary and sufficient condition for a single pair
±iω = ±i

√
∆1 of pure imaginary eigenvalues (ω > 0) is ∆0 = ∆1∆2, i.e.,

BCE = (D + F )
(
A2 +A(D + F ) +DF

)
(1.6)

evaluated at Ê. With

A =k1A1 +A0, A1 := f ′0(X(ẑ)) , A0 := k2Fx(X(ẑ), ẑ) , and

B =k1B1 +B0, B1 := f0(X(ẑ))
|q′(ẑ)|
q(ẑ)

, B0 := k2 F (X(ẑ), ẑ)
|q′(ẑ)|
q(ẑ)

+ k2Fz(X(ẑ), ẑ) ,
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we consider (1.6) as an equation of the parameters k1 and ẑ that is to be solved in the form k1 = K1(ẑ).
The curve K1(ẑ), given by the unique positive solution k1 = K1(ẑ) of the quadratic equation – derived
from (1.6) –

k2
1A

2
1 + k1R1(ẑ)−R0(ẑ) =

k2
1A

2
1 + k1

(
2A0A1 +A1(D + F )− B1CE

D + F

)
+
(
A0 +D

)(
A0 + F

)
− B0CE

D + F
= 0

(1.7)

evaluated at Ê, indicates possible Hopf bifurcation points in the ẑ-k1-plane. The necessary and sufficient

condition of the existence for a positive solution k1 of (1.7) is R0(ẑ)
!
> 0, i.e.,

B0CE
!
> (D + F )(A0 +D)(A0 + F ) . (1.8)

Taken together, having chosen the equilibrium component ẑ, we define x̂, ŷ according to (1.3) and
solve (1.7) for k1 = K1(ẑ) > 0, provided (1.8) is satisfied, and set k̂0 = P (ẑ, k1) according to (1.4).
Then, the possible Hopf-point is given by Ê = (x̂, ŷ, ẑ)T for the critical parameters kcrit1 = K1(ẑ) and
k̂crit0 = P (ẑ, kcrit1 ).

1.3 Hopf Transversality Condition

It rests to show that the above defined candidate bifurcation point Ê = (X(ẑ), Y (ẑ), ẑ)T satisfies the
transversality condition of the critical eigenvalues λ1,2(k1) = µ(k1)± iω(k1) of (1.5), i.e.,

µ′(kcrit1 ) =
∂µ(k1)
∂k1

∣∣∣∣
k1=kcrit1

6= 0 , ′ =
∂

∂k1
,

with µ(kcrit1 ) = 0 and ω(kcrit1 ) > 0 suppressing the ẑ-dependence for the moment.
With

ω = ±
√
AD +DF +AF

and (1.6) the vectors

v = (−BE, (A+ iω)(F + iω), E(A+ iω))T , w∗ = (C(F + iω), (A+ iω)(F + iω),−BC) ,

are right and left eigenvectors of J(kcrit1 ), respectively.
With J(kcrit1 )v = (µ(kcrit1 ) + iω(kcrit1 )) v we compute an expression for µ′(kcrit1 ) as follows:

J ′(kcrit1 ) v + J(kcrit1 ) v′ = (µ′(kcrit1 ) + iω′(kcrit1 )) v + (µ(kcrit1 ) + iω(kcrit1 )) v′ .

Left-multiplication with w∗ and inserting µ(kcrit1 ) = 0 lead to

w∗ J ′(kcrit1 ) v − i ω(kcrit1 )w∗ v′ = (µ′( kcrit1 ) + iω′(kcrit1 ))w∗ v + (µ(kcrit1 ) + iω(kcrit1 ))w∗ v′ . (1.9)

Apparently one has J ′(kcrit1 ) = −f ′0(x̂)e1eT1 − f0(x̂)
|q′(ẑ)|
q(ẑ)

e1e
T
3 . Thus, taking the real part of (1.9) one

obtains

µ′ =Re
(w∗ J ′ v
w∗ v

)
= Re

( (D + iω)(F + iω) (−Bq(ẑ)f ′0(x̂) + (A+ iω)f0(x̂) |q′(ẑ)|)
Bq(ẑ) (2iω(A+D + F ) +AD +AF +DF − 3ω2)

)
=

(D + F )(A(D + F ) +DF ) ((A+D)(A+ F ) |q′(ẑ)| f0(x̂)−Bq(ẑ)(2A+D + F )f ′0(x̂))
2Bq(ẑ) (ω2(A+D + F )2 + (A(D + F ) +DF )2)

=
(D + F )∆1 ((A+D)(A+ F ) |q′(ẑ)| f0(x̂)−Bq(ẑ)(2A+D + F )f ′0(x̂))

2B (∆2
1 + ∆2

2∆1) q(ẑ)

=f0(x̂)
|q′(ẑ)|
q(ẑ)

CE

2 (∆2
2 + ∆1)

− f ′0(x̂)
(A+ ∆2) (D + F )

2 (∆2
2 + ∆1)

6= 0 at (ẑ, K1(ẑ)) .
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Thus the transversality condition µ′ 6= 0 for a Hopf bifurcation is generically fulfilled. Whether a
supercritical or subcritical Hopf bifurcation occurs can be calculated with the Lyapunov coefficient, but
should only be evaluated for concrete cases. In the cases considered below, the system (1.1) exhibits
subcritical Hopf bifurcations [3].
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2 The role of auto-inhibitory feedback functions g and H

In the present section, we consider systems in which

f0(x) = f2(x) = x and g1(y) = g2(y) = y (2.1)

and the auto-inhibitory feedback functions g and H have the form

g(y, κy) =
1

1 + κy ym
and (2.2a)

H(z, κz) =
1

1 + κz zn
, (2.2b)

respectively. Here, one has

H ′(z, κz) :=
∂

∂z

( 1
1 + κz zn

)
= −nκz zn−1H2(z, κz) and

∂

∂κz
H(z, κz) = −znH2(z, κz) .

(2.3)

and for G(y, κy) = (yT − y)g(y, κy) from (1.2),

G′(y, κy) :=
∂G

∂y
(y, κy) = −

[
κymym−1 g2(y, κy)(yT − y) + g(y, κy)

]
and |G′(y, κy)| = κymym−1 g2(y, κy)(yT − y) + g(y, κy) > 0 ,

∂

∂κy
G(y, κy) = −(yT − y)ymg2(z, κy) .

(2.4)

We are interested in the κy- and κz-dependence of the stability of the steady state of the system
(1.1), respectively. Thus, in the following, we list κy and κz as additional parameters in the relevant
expressions. Note that in the two considered cases below we analyse only one of the functions g(y, κy)
and H(z, κz) at a time, whereas the remaining function is considered to be identically 1.

As above, we assume G(y, κy) = (yT − y) g(y, κy) and 0 ≤ y ≤ yT , but all general results can also be
derived for the case G(y, κy) = g(y, κy). In addition, we assume the function F (x, z) to be of the form

F (x, z) = f1(x) f3(z) =
x

Kx + x
f3(z) , (2.5)

with strictly increasing f3 on R≥0 vanishing at 0.
Apparently, we can always decreaseKx such that one has f1(x̂) ≈ 1 at the equilibrium Ê = (x̂, ŷ, ẑ)T =

(X(ẑ), Y (ẑ), ẑ)T (cf. (1.3)). Thus, we further approximate f1 by a smooth f1 : [0,∞)→ [0, 1] with

f1(0) = 0 , f1(x) = 1 for x ≥ a > 0 strictly increasing on (0, a)

and require that the x-component of the equilibrium Ê fulfills

x̂ = X(ẑ, κ) > a and thus f1(X(ẑ, κ)) = 1 , f ′1(X(ẑ, κ)) =
∂f1
∂x

(X(ẑ, κ)) = 0 . (2.6)

Hence, in this case is Fx(x, z) = 0 and F (x̂, ẑ) = f3(ẑ).
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2.1 The κy-dependence of the bifurcation curve K1(ẑ)

We consider (1.1) with (2.1), where g(y, κy) is of the form (2.2a), H ≡ 1, and F (x, z) = f1(x) f3(z) with
f1 satisfying (2.6). Thus system 1.1 becomes

dx

dt
= k0 q(z)−

(
k1 x+ k2 f1(x) f3(z)

)
,

dy

dt
= k3 xG(y, κy)− k4 y ,

dz

dt
= k5 y − k6 h(z) .

(2.7)

In this case, the equilibrium functions (1.3) read

ŷ = Y (ẑ) :=
k6 h(ẑ)
k5

≤ yT , x̂ = X(ẑ, κy) :=
k4 Y (ẑ)

k3G(Y (ẑ), κy)
(2.8)

for the parameter value

k̂0 = P (ẑ, k1, κy) :=
1
q(ẑ)

(
k1X(ẑ, κy) + k2 f3(ẑ)

)
. (2.9)

With (2.6) the Jacobian of (2.7) at the steady state Ê is given by

J(ẑ, k1, κy) =

 −k1 0 −B(k1, ẑ, κy)
C(ẑ, κy) −D(ẑ, κy) 0

0 E −F (ẑ)


:=

 −k1 0 −(k1B1(ẑ, κy) +B0(ẑ))
k3G(Y (ẑ), κy) −[k4 + k3X(ẑ, κy) |G′(Y (ẑ), κy)|] 0

0 k5 −k6 h
′(ẑ)


=

 −k1 0 −(k1B1(ẑ, κy) +B0(ẑ))
k3G(Y (ẑ), κy) −k4 [1 + Y (ẑ) |G

′(Y (ẑ),κy)|
G(Y (ẑ),κy)

] 0
0 k5 −k6 h

′(ẑ)


(2.10)

where

B0(ẑ) = k2 f3(ẑ)
|q′(ẑ)|
q(ẑ)

+ k2 f
′
3(ẑ) and

B1(ẑ, κy) = X(ẑ, κy)
|q′(ẑ)|
q(ẑ)

.

(2.11)

Thus, according to (1.7), the critical curve k1 = K1(ẑ, κy) becomes – for fixed κy – the unique positive
solution of the quadratic equation

0 = k2
1 +R1(ẑ, κy) k1 −R0(ẑ, κy) . (2.12)

Note that, with (2.11) and (2.8), B1(ẑ, κy)C(ẑ, κy)E = k4 k5 Y (ẑ)
|q′(ẑ)|
q(ẑ)

, such that the coefficients of

(2.12) become

R1(ẑ, κy) =D(ẑ, κy) + F (ẑ)− k4 k5 Y (ẑ)
D(ẑ, κy) + F (ẑ)

|q′(ẑ)|
q(ẑ)

and

R0(ẑ, κz) =
B0(ẑ)C(ẑ, κy)E
D(ẑ, κy) + F (ẑ)

−D(ẑ, κy)F (ẑ) ,
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We are interested in the κy-dependence of the positive solutions k1 = K1(ẑ, κy) of (2.12). Therefore, in
the following, we will omit the ẑ-dependence in some instances for simplicity. With (2.4) and (2.8) one
has

C(κy) =k3G(ŷ, κy) ,

D(κy) = k4

[
1 +

ŷ |G′(ŷ, κy)|
G(ŷ, κy)

]
= k4

[
1 +

( ŷ

yT − ŷ
+mκy ŷ

m g(ŷ, κy)
)]

.

Thus, the κy-derivatives of C(κy) and D(κy) are given by

C ′(κy) = −k3 (yT − ŷ) ŷm g2(ŷ, κy) < 0

D′(κy) = k4mŷm g2(ŷ, κy) > 0
(2.13)

so that the κy-derivatives of R1(κy) and R0(κy) satisfy

R′1(κy) = D′(κy) +
k4 k5 Y D

′(κy)(
D(κy) + F

)2 |q′|q > 0 and

R′0(κy) =
B0 C

′(κy)E
D(κy) + F

− B0 C(κy)ED′(κy)(
D(κy) + F

)2 −D′(κy)F < 0 .
(2.14)

Under R0(ẑ, κy) > 0, the positive zero k1 = K1(ẑ, κy) of (2.12) satisfies(
2K1(ẑ, κy) +R1(ẑ, κy)

) ∂

∂κy
K1(ẑ, κy) = R′0(ẑ, κy)−K1(ẑ, κy)R′1(ẑ, κy)

together with (2.14) leading to
∂

∂κy
K1(ẑ, κy) < 0

and thus to a shrinking oscillation region in the (ẑ, k1)-plane for increasing κy.

2.1.1 Example 1: Outflow-activation model with auto-inhibition in the y-component

For illustration, we set f1(x) = x/(Kx + x), f3(z) = z and h(z) = z/(Kz + z). Together with the above
introduced specifications (2.1), g(y, κy) = 1/(1 + κy y

m), and H ≡ 1 our system (1.1) becomes

dx

dt
= k0 −

(
k1 x+

k2 x z

Kx + x

)
dy

dt
=
k3 x (yT − y)

1 + κy ym
− k4 y

dz

dt
= k5 y −

k6 z

Kz + z
.

(2.15)

The corresponding wiring scheme of the system (2.15) is represented in Figure S1A.
In Figure S2A we display the curve K1(ẑ, κy) according to (2.12) with (2.8) and (2.9) for κy = 0 and

κy = 40, respectively.
The dot in Figure S2A indicates a chosen ẑ and k1, for which the corresponding eigenvalues of (2.10) are
displayed in Figure S2B for κy = 0 and κy = 40, respectively. Figures S2C and S2D display simulations
of (2.15) for the chosen ẑ and k1 and for κy = 0 and κy = 40, respectively. For the other parameter
settings refer to the legend in Figure S2. Note that here f1(X(ẑ, 0)) ≈ f1(X(ẑ, 40)) > 0.99 ≈ 1.
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Figure S1 – Wiring schemes of generic integral feedback models. A: Outflow-activation model with auto-
inhibition in the y-component (Example 1) with equations (2.15), B: Inflow-inhibition model with auto-
inhibition in the y-component (Example 2) with equations (2.16), C: Outflow-activation model with auto-
inhibition in the z-component (Example 3) with equations (2.27), D: Inflow-inhibition model with auto-
inhibition in the z-component (Example 4) with equations (2.28). Reaction numbers correspond to parameter
numbers.

Figure S2 shows that, according to the subcritical Hopf bifurcation, the area below the curve K1(ẑ, κy)
is the region, where the system oscillates. Figure S2A also clearly demonstrates that increasing κy de-
creases this region. Thus, for given values of ẑ and k1, we can increase κy such that the initially oscillating
system (Figure S2C) is stabilized (Figure S2D), corresponding to a shift of the single pair of pure imagi-
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Figure S2 – Analysis of system (2.15) for (ẑ, k1) = (0.4, 0.2). A: Bifurcation curves K1(ẑ, κy). Shaded
regions indicate where oscillations occur for κy = 0 (light gray) and κy = 40 (dark gray), respectively. The
dot corresponds to (ẑ, k1). B: Eigenvalues of (2.10) for κ = 0 and κy = 40, respectively. C: Simulations
of (2.15) for κy = 0. D: Simulations of (2.15) for κy = 40. Other parameters: k2 = 0.3, k3 = k5 = 0.1,
k4 = k6 = 0.02, Kz = 0.05, Kx = 0.0001, m = 2. For κy = 40, µ′(kcrit

1 ) = −0.21 and the Lyapunov
coefficient l1(kcrit

1 ) = −4777. Thus, we have a subcritical Hopf bifurcation giving rise to stable limit cycles.

nary eigenvalues from the right half-plane into the left half-plane of C (Figure S2B).

In Figure S3 we demonstrate that assumption (2.6) is critical for the above analysis of the influence of
κy on the stability of system (2.15). Note that for the parameters chosen for the simulation in Figure S3
f1(X(ẑ, 0)) ≈ f1(X(ẑ, 40)) < 0.97, and thus just two percent less than in Figure S2. Figure S3 demon-
strates that increasing κy does not necessarily eradicates oscillatory behaviour, when f ′1(X(ẑ, κy)) 6= 0.
In the present case even the contrary happens, i.e. oscillation arise with increasing κy.

2.1.2 Example 2: Inflow-inhibition model with auto-inhibition in the y-component

For illustrating the role of auto-inhibitory feedbacks for the Goodwin-type models with signalling compo-
nents, we set q(z) = 1/(1 +K zh) and k2 = 0. Together with the other specifications from system (2.15)
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Figure S3 – Analysis of system (2.15) for (ẑ, k1) = (0.8, 0.04). A: Bifurcation curves K1(ẑ, κy). Shaded
regions indicate where oscillations occur for κy = 0 (light gray) and κy = 40 (dark gray), respectively. The
dot corresponds to (ẑ, k1). B: Eigenvalues of (2.10) for κy = 0 and κy = 40, respectively. C: Simulations
of (2.15) for κy = 0. D: Simulations of (2.15) for κy = 40. Other parameters: k2 = 0.3, k3 = k5 = 0.1,
k4 = k6 = 0.02, Kz = 0.05, Kx = 0.003, m = 2. For κy = 40, µ′(kcrit

1 ) = −0.219 and the Lyapunov
coefficient l1(kcrit

1 ) = −215839. Thus, we have a subcritical Hopf bifurcation giving rise to stable limit
cycles.

we now have
dx

dt
=

k0

1 +K zh
− k1 x

dy

dt
=
k3 x (yT − y)

1 + κy ym
− k4 y

dz

dt
= k5 y −

k6 z

Kz + z
.

(2.16)

The corresponding wiring scheme of the system (2.16) is represented in Figure S1B.
In Figure S4A we display the curve K1(ẑ, κy) according to (2.12) with (2.8) and (2.9) for κy = 0 and

κy = 10, respectively. The dot in Figure S4A indicates a chosen ẑ and k1, for which the corresponding
eigenvalues of (2.10) are displayed in Figure S4B for κy = 0 and κy = 10, respectively. Figures S4C and
S4D display simulations of (2.16) for the chosen ẑ and k1 and for κy = 0 and κy = 10, respectively. For
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the other parameter settings refer to the legend in Figure S4.
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Figure S4 – Analysis of system (2.16) for (ẑ, k1) = (0.2, 0.06). A: Bifurcation curves K1(ẑ, κy). Shaded
regions indicate where oscillations occur for κy = 0 (light gray) and κy = 10 (dark gray), respectively. The
dot corresponds to (ẑ, k1). B: Eigenvalues of (2.10) for κy = 0 and κy = 10, respectively. C: Simulations of
(2.16) for κy = 0. D: Simulations of (2.16) for κy = 10. Other parameters: K = 100, h = 2, k3 = k5 = 0.08,
k4 = k6 = 0.02, Kz = 1e−5, m = 2. For κy = 10,µ′(kcrit

1 ) = −0.32 and the Lyapunov coefficient l1(K1(ẑ)) =
−197860. Thus, we have a subcritical Hopf bifurcation giving rise to stable limit cycles.

Figure S4 shows that, according to the subcritical Hopf bifurcation, the area below the curve K1(ẑ, κy)
is the region, where the system oscillates. Figure S4A also clearly demonstrates that increasing κy de-
creases this region. Thus, for given values of ẑ and k1, we can increase κy such that the initially oscillating
system (Figure S4C) is stabilised (Figure S4D), corresponding to a shift of the single pair of pure imag-
inary eigenvalues from the right half-plane into the left half-plane of C (Figure S4B). Notably, for the
Goodwin-type models no restrictions as (2.6) apply, i.e. the oscillatory regions in always decreased for
increasing κy.

Note that the cooperativity of the delayed feedback function q(z) = 1/(1 +K zh) is h = 2 in our case.
This is well below the reported necessary cooperativity of 8 to get oscillations [2].
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2.2 The κz-dependence of the bifurcation curve K1(ẑ)

We consider (1.1) with (2.1), where H(z, κz) is of the form (2.2b), g ≡ 1, and F (x, z) = f1(x) f3(z) with
f1 satisfying (2.6). Thus system (1.1) becomes

dx

dt
= k0 q(z)−

(
k1 x+ k2 f1(x) f3(z)

)
,

dy

dt
= k3 x (yT − y)− k4 y ,

dz

dt
= k5 y H(z, κy)− k6 h(z) .

(2.17)

In this case, the equilibrium functions (1.3) read

ŷ = Y (ẑ, κz) :=
k6 h(ẑ)

k5H(ẑ, κz)
≤ yT , x̂ = X(ẑ, κz) :=

k4 Y (ẑ, κz)
k3

(
yT − Y (ẑ, κz)

) (2.18)

for the parameter value

k̂0 = P (k1, ẑ, κz) :=
1
q(ẑ)

(
k1X(ẑ, κz) + k2 f3(ẑ)

)
. (2.19)

With (2.6) the Jacobian of (2.17) at the steady state Ê(ẑ) is given by

J(k1, κz) =

 −k1 0 −B(k1, ẑ, κz)
C(ẑ, κz) −D(ẑ) 0

0 E(ẑ, κz) −F (ẑ, κz)


:=

 −k1 0 −(k1B1(ẑ, κz) +B0(ẑ))
k3(yT − Y (ẑ, κz)) −(k4 + k3X(ẑ)) 0

0 k5H(ẑ, κz) −[k6 h
′(ẑ) + k5 Y (ẑ) |H ′(ẑ, κz)|]


=

 −k1 0 −(k1B1(ẑ, κz) +B0(ẑ))
k3(yT − Y (ẑ, κz)) −(k4 + k3X(ẑ)) 0

0 k5H(ẑ, κz) −k6

[
h′(ẑ) + h(ẑ) |H

′(ẑ,κz)|
H(ẑ,κz)

]
 .

(2.20)

where

B0(ẑ) = k2 f3(ẑ))
|q′(ẑ)|
q(ẑ)

+ k2 f
′
3(ẑ) and

B1(ẑ, κz) = X(ẑ, κz)
|q′(ẑ)|
q(ẑ)

,

(2.21)

Thus, according to (1.7), the critical curve k1 = K1(ẑ, κz) becomes – for fixed κz – the unique positive
solution of the quadratic equation

0 = k2
1 +R1(ẑ, κz) k1 −R0(ẑ, κz) . (2.22)

Note that with (2.21) and (2.18) B1(ẑ, κz)C(ẑ, κz)E(ẑ, κz) = k4 k5H(ẑ, κz)
|q′(ẑ)|
q(ẑ)

, such that the coeffi-

cients of (2.22) become

R1(ẑ, κz) =D(ẑ) + F (ẑ, κz)−
k4 k5H(ẑ, κz)
D(ẑ) + F (ẑ, κz)

|q′(ẑ)|
q(ẑ)

and

R0(ẑ, κz) =
B0(ẑ)C(ẑ, κz)E(ẑ, κz)

D(ẑ) + F (ẑ, κz)
−D(ẑ)F (ẑ, κz) ,
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We are interested in the κz-dependence of the positive solutions K1(ẑ, κz) of (2.22). Therefore, in the
following, we will omit the ẑ-dependence in some instances for simplicity.

By (2.3) one has |H ′(ẑ, κz)| = nκz ẑ
n−1H2(ẑ, κz) and, therefore,

C(κz) =k3(yT − Y (ẑ, κz)) = k3

(
yT −

k6 h(ẑ)
k5H(ẑ, κz)

)
,

E(κz) =k5H(ẑ, κz) and

F (κz) =k6

[
h′(ẑ) + h(ẑ)nκz ẑn−1H(ẑ, κz)

]
.

Thus, the κz-derivatives are given by

C ′(κz) = −k3 k6 h(ẑ) ẑn

k5
< 0 and

E′(κz) = −k5 ẑ
nH2(ẑ, κz) < 0 and

F ′(κz) = k6 h(ẑ)n ẑn−1H2(ẑ, κz) > 0 .

(2.23)

implying

R′1(κz) = F ′(κz)−
k4 k5

(D + F (κz))2
|q′|
q

( ∂

∂κz
H(κz) (D + F (κz))−H(κz)F ′(κz)

)
> 0 and

R′0(κz) =
B0

(
C ′(κz)E(κz) + C(κz)E′(κz)

)
D + F (κz)

− B0 C(κz)E(κz)F ′(κz)
(D + F (κz))2

−DF ′(κz) < 0 .
(2.24)

Under R0(κz) > 0, the positive zero k1 = K1(ẑ, κz) of (2.22) satisfies(
2K1(ẑ, κz) +R1(ẑ, κz)

) ∂

∂κz
K1(ẑ, κz) = R′0(ẑ, κz)−K1(ẑ, κz)R′1(ẑ, κz) (2.25)

together with (2.24) leading to
∂

∂κz
K1(ẑ, κz) < 0 (2.26)

and thus to a shrinking oscillation region in the (ẑ, k1)-plane for increasing κz. The oscillation region in
the (ẑ, k1)-plane is the one below the graph of k1 = K1(ẑ, κz).

2.2.1 Example 3: Outflow-activation model with auto-inhibition in the z-component

For illustration, we set f1(x) = 1/(Kx + x), f3(z) = z and h(z) = z/(Kz + z). Together with the above
introduced specifications (2.1), with H(z, κz) = 1/(1 + κz z

n), and g ≡ 1, our system (1.1) becomes

dx

dt
= k0 −

(
k1 x+

k2 x z

Kx + x

)
dy

dt
= k3 x (yT − y)− k4 y

dz

dt
=

k5 y

1 + κz zn
− k6 z

Kz + z
.

(2.27)

The corresponding wiring scheme of the system (2.27) is represented in Figure S1C.
In Figure S5A we display the curve K1(ẑ, κz) according to (2.18) and (2.22) for κz = 0 and κz = 4,

respectively. The dot in Figure S5A indicates a chosen ẑ and k1 for which the corresponding eigenvalues
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Figure S5 – Analysis of system (2.27) for (ẑ, k1) = (0.3, 0.2). A: Bifurcation curves K1(ẑ, κz). Shaded
regions indicate where oscillations occur for κz = 0 (light gray) and κz = 4 (dark gray), respectively. The
dot corresponds to (ẑ, k1). B: Eigenvalues of (2.20) for κz = 0 and κz = 4, respectively. C: Simulations
of (2.27) for κz = 0. D: Simulations of (2.27) for κz = 4. Other parameters: k2 = 0.3, k3 = k5 = 0.1,
k4 = k6 = 0.02, Kz = 0.01, Kx = 0.001, m = 2. For κz = 4, µ′(kcrit

1 ) = −0.22 and the Lyapunov coefficient
l1(kcrit

1 ) = −25604. Thus, we have a subcritical Hopf bifurcation giving rise to stable limit cycles.

of (2.20) are displayed in Figure S5B for κz = 0 and κz = 4, respectively. Figures S5C and S5D display
simulations of (2.27) for the choosen ẑ and k1 and for κz = 0 and κz = 4, respectively. For the other
parameter settings refer to the legend in Figure S5.

Figure S5 shows that, according to the subcritical Hopf bifurcation, the area below the curve K1(ẑ, κz)
is the region, where the system oscillates. Figure S5A also clearly demonstrates that an increase of κz
decreases this region. Thus, for given values of ẑ and k1, we can increase κz such that the initially
oscillating system (Figure S5C) is stabilised (Figure S5D), corresponding to a shift of the single pair of
pure imaginary eigenvalues from the right half-plane into the left half-plane (Figure S5B).

In Figure S6 we demonstrate that assumption (2.6) in this case is not as critical for the above analysis
of the influence of κz on the stability of the system (2.27) as for (2.16). Note that, for the parameters
chosen for the simulation in Figure S6, f1(X(ẑ, 0)) ≈ f1(X(ẑ, 4)) < 0.87, i.e. much less than in Figure S3.
In this case, increasing κz still decreases the oscillatory region, even though assumption (2.6) is somewhat
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relaxed.
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Figure S6 – Analysis of system (2.27) for (ẑ, k1) = (0.3, 0.2). A: Bifurcation curves K1(ẑ, κz). Shaded
regions indicate where oscillations occur for κz = 0 (light gray) and κz = 4 (dark gray), respectively. The
dot corresponds to (qẑ, k1). B: Eigenvalues of (2.20) for κz = 0 and κz = 4, respectively. C: Simulations
of (2.27) κz = 0. D: Simulations of (2.27) for κz = 4. Other parameters: k2 = 0.3, k3 = k5 = 0.1,
k4 = k6 = 0.02, Kz = 0.01, Kx = 0.01, m = 2. For κz = 4, µ′(kcrit

1 ) = −0.23 and the Lyapunov coefficient
l1(kcrit

1 ) = −101897. Thus, we have a subcritical Hopf bifurcation giving rise to stable limit cycles.

2.2.2 Example 4: Inflow-inhibition model with auto-inhibition in the z-component

For illustrating the role of auto-inhibitory feedbacks for the Goodwin-type models with signalling com-
ponents, we set q(z) = 1/(1 + K zh) and k2 = 0. Together with the other specifications from (2.2) our
system (1.1) becomes

dx

dt
=

k0

1 +K zh
− k1 x

dy

dt
= k3 x (yT − y)− k4 y

dz

dt
=

k5 y

1 + κz zm
− k6 z

Kz + z
.

(2.28)
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The corresponding wiring scheme of the system (2.28) is represented in Figure S1D.
In Figure S7A we display the curve K1(ẑ, κ) according to (2.9) and (2.12) for κz = 0 and κz = 1,

respectively.
The dot in Figure S7A indicates a chosen ẑ and k1, for which the corresponding eigenvalues of (2.20) are
displayed in Figure S7B for κz = 0 and κz = 1, respectively. Figures S7C and S7D display simulations of
(2.28) for the chosen ẑ and k1 and for κz = 0 and κz = 1, respectively. For the other parameter settings
refer to the legend in Figure S7.
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Figure S7 – Analysis of system (2.28) for (ẑ, k1) = (0.3, 0.1). A: Bifurcation curves K1(ẑ, κz). Shaded
regions indicate where oscillations occur for κz = 0 (light gray) and κz = 1 (dark gray), respectively. The
dot corresponds to (ẑ, k1). B: Eigenvalues of (2.20) for κz = 0 and κz = 1, respectively. C: Simulations of
(2.28) for κz = 0. D: Simulations of (2.28) for κz = 10. Other parameters: K = 100, h = 2, k3 = k5 = 0.25,
k4 = k6 = 0.06, Kz = 0.0001, m = 2. For κz = 0, µ′(kcrit

1 ) = −0.2 and the Lyapunov coefficient l1(kcrit
1 ) =

−1082. Thus, we have a subcritical Hopf bifurcation giving rise to stable limit cycles.

Figure S7 shows that, according to the subcritical Hopf bifurcation, the area below the curve K1(ẑ, κz)
is the region, where the system oscillates. Figure S7A also clearly demonstrates that increasing κz
decreases this region. Thus, for given values of ẑ and k1, we can increase κz such that the initially
oscillating system (Figure S7C) is stabilised (Figure S7D), corresponding to a shift of the single pair of
pure imaginary eigenvalues from the right half-plane into the left half-plane of C (Figure S7B). Note that
the cooperativity of the delayed feedback function q(z) = 1/(1 +K zn) is n = 2 in our case. This is well
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below the reported necessary cooperativity of 8 in order to get oscillations [2].
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3 The HOG system

3.1 The model

In order to describe the data provided in Figure 4 in the main text, we tested the following models based
on our general framework (1.1):

dx

dt
=

k0 +NaCl

(1 +K zh)δ1
− k1 x− (1− δ1)

k2 x z

(Kx + x)δ2

dy

dt
=

k3 x(1− y)
(1 + κ yn)δ3

− k4 y

dz

dt
= k5 y −

k6 z

(Kz + z)δ4
,

(3.1)

where δ = (δ1, δ2, δ3, δ4), δi ∈ {0, 1}, i = 1, ..., 4 indicate model alternatives. The model No. 6 with
δ = (0, 1, 1, 0) was selected the best approximating model (see Table 1 in the main text). Here, x(t) is
a putative sensor of the system reacting to the external stimulus NaCl, y(t) represents phosphorylated
Hog1, and z(t) represents internal glycerol concentration. We further assumed a constant total concen-
tration of phosphorylated and unphosphorylated Hog1 equivalent to 1.
From the data in Figure 4 is becomes clear that there is a non-zero steady state for the unperturbed
situation (NaCl = 0) for phosphorylated Hog1 and internal glycerol, i.e. y0 and z0, respectively. There-
fore, we arbitrarily set initial values for Hog1 and internal glycerol to y0 = 0.02 and z0 = 0.2 similar
as in Schaber et al. (2012). In order to fit x(t) and z(t) to the data, we used the scaled variables
xscaled(t) = 100x(t)/0.8 and zscaled(t) = 17 z(t)/z0, assuming that at maximum relative Hog1 phospho-
rylation, i.e. 80% of the total Hog1 are phosphorylated, and that the initial value of internal glycerol is
17% of its maximum after an osmotic shock of 0.5 NaCl as in the data (see Figure 4C). The initial value
x0 of x was fitted to the data. The inhibition experiment (Figure 4B) was simulated by multiplying the
simulated value of activated Hog1 by 0.001.
With the assumed, respectively fitted, initial concentrations, we reduced the number of free parameters
by setting

k0 =
(
k1 x0 +

k2 x0 z0
(Kx + x0)δ2

)
for δ1 = 0 and

k1 =
k0

x0(1 +K zh0 )
for δ1 = 1

and

k4 =
k3 x0(1− y0)
y0(1 + κ yn0 )δ3

k6 =
k5 y0 (Kz + z0)δ4

z0
.

Therefore, we are left with 8 free parameters that were fitted to the data. The estimated parameters
of the best approximating model No. 6 (see Table 1 in the main text) are listed in Table SS2. The
parametrised model and the data is provided in the Supplementary Material in COPASI format.

In Figure S8 the data and simulated values for model No. 2 (δ = (0, 1, 0, 0)) are displayed.

3.2 Bifurcation analysis

The best approximating model No. 6 with δ = (0, 1, 1, 0) employed an auto-inhibition (δ3 = 1). However,
the corresponding model without auto-inhibition, i.e. model No. 2 with δ = (0, 1, 0, 0) (ranked third,
Table 1 in the main text) performed almost equally as good with respect to the AIC (see Table 1, main
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Figure S8 – HOG system. Data and fit for the model No. 2 (δ = (0, 1, 0, 0)). A: Measured (dots) and
simulated (lines) phosphorylated Hog1 (y) for different osmotic stress conditions. B: Measured (dots) and
simulated (lines) phosphorylated Hog1 (y) in an experiments without osmotic shock and where Hog1 kinase
activity was inhibited by the kinase inhibitor SPP86. C: Measured (dots) and simulated (lines) glycerol (z)
upon an osmotic shock of 0.5M NaCl.

text) and had similar parameter values. Therefore, we compared the stability of the steady states of the
two models for an osmotic shock of 0.5M NaCl with respect to different parameter combinations. The
glycerol production parameter k5 was the most sensitive with respect to steady state stability, therefore,
we plotted the steady state stability in two dimensions, where the horizontal axis corresponds to k5 and
the vertical axis to other estimated parameters and initial conditions, respectively (Figure 5 and Figure
S9).

The permissive region where oscillations occur in the respective two-dimensional parameter space is
always smaller for the model with auto-inhibition (model No. 6, dark gray regions) compared to the
model without auto-inhibition (model No. 2, light gray regions).

3.3 Monte Carlo analysis of steady state sensitivities

In models of biological systems constant parameters are usually simplifications of underlying biochemical
processes, which are assumed to be constant in the actual setting. As this assumption usually only holds
approximately, it is of interest to consider properties of the system under small parameter perturbations.
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Here, we consider the equilibrium of the best approximating models with and without auto-inhibition,
i.e. model No. 6 (δ = (0, 1, 1, 0)) and model No. 2 (δ = (0, 1, 0, 0), ranked third, Table 1 in the main
text), respectively, in order to investigate, whether the auto-inhibitory feedback in the HOG model system
stabilizes the steady state after adaptation. To this end, we performed a Monte Carlo analysis. All free
parameters of the best approximating model No. 6 and the according model without auto-inhibitory
feedback (Model No. 2) were simultaneously perturbed by sampling the respective parameter 1000 times
from a uniform distribution ranging from half to double of its original value. Subsequently, we calculated
the according steady states after an osmotic shock on 0.2 M NaCl. In Table SS1 we list some test
statistics concerning differences in location (U test, K-S test,) and scale (S-T test, C test) concerning the
resulting distributions of the difference between the original steady state and the perturbed steady state.
The steady states of x̂ and ŷ were significantly less sensitive to parameter perturbations in the model
with auto-inhibition.
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Table S1 – HOG model Monte Carlo analysis. Variance measures and test statistics.

x̂ ŷ ẑ

Model w/o FB with FB w/o FB with FB w/o FB with FB

Variance 0.02 0.005 0.001 0.001 0.025 0.026
IQR 0.17 0.06 0.04 0.04 0.21 0.21
U test - - -
K-S test *** - -
S-T test *** - -
C test *** ** -

w/o: without, IQR: Interquartile range, U: Mann-Withney, K-S: Kolmogoroff-
Smirnov, S-T: Siegel-Tukey, C: Conover,***: P < 0.01, **: P < 0.05, *: P < 0.1,
-:P > 0.1, where P is the P -value of the respective test.

4 The p53 system

4.1 The model

In order to describe the data provided in Figure 7 in the main text, we tested the following models based
on our general framework (1.1):

dx

dt
=

k0

(1 +K zh)δ1
− k1 x− (1− δ1)

k2 x

(Kx + x)δ2
zn

δ3

(Kn
1 + zn)δ3

dy

dt
= k3 x− k4 y

dz

dt
=

k5 y

(1 + κzm)δ4
− k6 z

(Kz + z)δ5
,

(4.1)

where δ = (δ1, δ2, δ3, δ4, δ5), δi ∈ {0, 1}, i = 1, ..., 5 indicate model alternatives. The model No. 11
with δ = (0, 0, 1, 0, 1) was selected as the best approximating model (see Table 3 in the main text). Here,
x(t) is activated p53 and the transducer y(t) is an intermediate component, e.g. Mdm2 RNA. Conse-
quently, for the latter component no mass conservation is assumed. The response z(t) is Mdm2 protein
concentration, which in turn mediates p53 degradation.
Opposed to the HOG system, the data indicated initial concentrations of p53 and Mdm2 of zero. There-
fore, we set the initial concentrations of all variables to zero. This impeded reducing the dimensionality of
the parameter estimation problem as for the HOG system. Thus, we estimated all model parameters. The
estimated parameters of the best approximating model No. 11 (see Table 3 in the main text) are listed
in Table SS3. COPASI was unable to calculate asymptotic confidence intervals because of the singularity
of the Fisher information matrix. The parametrised model No. 11 is provided in the Supplementary
Material in COPASI format.

4.2 Bifurcation analysis

As for the HOG model, we conducted a bifurcation analysis for the best approximating model No. 11
(δ = (0, 0, 1, 0, 1)) by analysing the stability of steady states with respect to different parameter combina-
tions (Figure S10). In this case, the best approximating model employed no auto-inhibition, i.e. δ4 = 0.
However, the corresponding model with auto-inhibition, i.e. model No. 15 (δ = (0, 0, 1, 1, 1)), which was
ranked second (see Table 3 in the main text), showed rather different stability regions, and, therefore, we
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Table S2 – Estimated free parameters of
the best approximating HOG model No. 6
(δ = (0, 1, 1, 0)) with estimated asymptotic
standard deviation (stdev)

parameter value stdev

x0 0.0212649 0.0580806
k1 0.0314835 0.0856927
k2 0.53387 0.0217899
Kx 0.00100833 0.00296022
κy 5.93877 0.109613
h 1 0.109613
k3 0.0149781 0.00620738
k5 0.000752464 5.56738e-05

Table S3 – Estimated free parameters of
the best approximating p53 model No. 11
(δ = (0, 0, 1, 0, 1))

parameter value

k0 0.234571
k1 2.78481e-06
k2 2.16401
K1 0.644017
n 9.42914
k3 2.33117
k4 1.18023
k5 0.570981
k6 0.556487
Kz 0.0478507

refrained from a direct comparison of the two models. Instead, we analysed the stability of model No.
11 with and without auto-inhibtion by leaving all other parameters unchanged.

Not for all parameter sets a steady state existed, because h(z) = z/(Kz+z) in (4.1) was limited. These
parameter combinations are indicated by hashed areas in Figure S10. In Figure S10 all parameters of the
model are used as bifurcaton parameter at least once. The unstable region decreases by introducing an
auto-inhibitory negative feedback. Moreover, upon addition of the auto-inhibitory feedback, the stability
of the system changes, moving it from an unstable fixed point with limit cycle oscillations to a stable
fixed point.

4.3 Monte Carlo analysis of steady state sensitivities

As above, we considered the equilibrium of the best approximating model with and without feedback, i.e.
model No. 15 and model No. 11, respectively, under simultaneous perturbation of all free parameters, in
order to investigate, whether an auto-inhibitory feedback in the p53 model system stabilizes the steady
state. To this end, we performed a Monte Carlo analysis. All free parameters of the best approximating
model No. 11 and the according model with auto-inhibitory feedback (Model No. 15, ranked second,
Table 3 in the main text) were simultaneously perturbed by sampling the respective parameter 1000 times
from a uniform distribution ranging from half to double of its original value. Subsequently, we calculated
the according steady states, if they existed. In Table SS4 we list some test statistics concerning differences
in location (U test, K-S test,) and scale (S-T test, C test) concerning the resulting distributions of the
difference between the original steady state and the perturbed steady state. For the model with auto-
inhibition (model No. 15) all steady states were significantly less sensitive to parameter perturbations.
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Figure S10 – Stability and bifurcation analysis for the best approximating model No. 15. Gray and
light gray indicate regions with unstable steady state, i.e. where oscillations occur, for the system with
(κ = 1.253, h2 = 3) and without (original) feedback, respectively. The boundary between white and shaded
regions indicates bifurcation lines in the respective two-dimensional parameter space. The hashed regions
indicate parameter combinations which do not result in equilibria.

Table S4 – p53 model Monte Carlo analysis. Variance measures and test statis-
tics.

x̂ ŷ ẑ

Model w/o FB with FB w/o FB with FB w/o FB with FB

Variance 0.28 0.24 1.74 0.32 0.1 0.09
IQR 0.52 0.49 1.55 0.65 0.48 0.44
U test - ** -
K-S test - *** *
S-T test * *** ***
C test *** *** ***

w/o: without, IQR: Interquartile range, U: Mann-Withney, K-S: Kolmogoroff-
Smirnov, S-T: Siegel-Tukey, C: Conover,***: P < 0.01, **: P < 0.05, *: P < 0.1,
-:P > 0.1, where P is the P -value of the respective test.
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